Brain training reverses age-related cognitive decline: study

July 20, 2010

Specialized brain training targeted at the regions of a rat's brain that process sound reversed many aspects of normal, age-related cognitive decline and improved the health of the brain cells, according to a new study from researchers at University of California, San Francisco.

The results indicate that people who experience age-related cognitive decline, including slower mental processing and decreased response to new stimuli, might also benefit from specially designed mental exercises.

"From middle age onward, there are universal changes in the brain affecting perceptual processing," said Etienne de Villers-Sidani, MD, a neurologist and post-doctoral fellow with the UCSF Department of Otolaryngology who was the lead author on the study. "We used to think these were permanent changes and now are beginning to think maybe they're not."

The study found that intense auditory training greatly improved sound perception and processing among rats that had previously experienced normal, age-related sensory-processing degradation. Findings appeared online July 19 in the at

Collaborators Rick C.S. Lin, PhD, and Kimberly Simpson, PhD, along with graduate student Loai Alzghoul at the University of Mississippi Medical Center (UMMC), documented physical changes in the brains of the trained, aging rats in the paper. They found that myelin density and neuron health improved in the primary auditory to nearly the level seen in young rats.

"These results are encouraging because as Baby Boomers age, we'll have more and more elderly people," said Lin, a professor of anatomy at the UMMC. "They indicate that you shouldn't just stick to your routine. Challenge yourself and don't stop doing something just because you might take longer at it."

The study builds upon extensive previous research in the laboratory of Michael M. Merzenich, PhD, UCSF professor of otolaryngology and physiology and senior author on the paper. Merzenich's research had demonstrated how cognitive training can powerfully rewire brain circuits. de Villers-Sidani said he and collaborators are in the first stages of designing programs and figuring out which training strategies will be most effective in humans.

For a month researchers spent an hour a day giving two groups of rats - young and old - intense auditory training. Two other groups of aging and young rats, used as controls, received no training. Aging rats between 26 and 32 months are equivalent to humans aged 65 to 85, de Villers-Sidani said, an age range at which cognitive and sensory processing have degraded.

Specifically, the researchers targeted the rats' primary auditory cortices, the sound-processing areas of their brains. In their training, rats heard a rapid sequence of six notes, five of the same pitch and one different, oddball pitch. The oddball note came at random on any one of the sequence's final four notes.

When a rat recognized the oddball note, it received a food reward. The researchers progressively upped the difficulty by stepping the oddball's pitch from a half-octave above the base note to ultimately only one-fiftieth an octave difference. Both young and aging rats steadily improved.

At the end of the month, the researchers used electrophysiology to test for a range of characteristics related to auditory cortex response. In the trained aging rats, they found partial-to-complete recovery in the ability to discriminate between frequencies. That improvement held true across the entire frequency spectrum on which they had been trained.

Compared with the aging controls, the trained aging rats also showed an improved ability to process successive signals, suppress false-positive responses and suppress background noise while deciphering novel stimuli, a skill, for example, important to humans trying to hold a conversation in a noisy room.

"One of the most striking findings of this study is that every aspect of sound processing we examined in the aging primary auditory cortex was degraded and then substantially reversed with a simple training strategy," de Villers-Sidani wrote in the study's results.

Post-mortem analysis of the rats' auditory cortices showed surprising physical changes in the aged-trained group.

Lin, who holds a co-appointment in the UMMC Department of Psychiatry and Human Behavior, said the cortices of trained aging rats showed not only an increased number of inhibitory neurons, specialized cells crucial for sensory perception and synaptic plasticity, but normal-looking inhibitory neurons that resembled those found in young rats.

The untrained aging rats showed on average 25 percent fewer inhibitory neurons compared with the untrained young rats. Training the aging rats partially reversed that trend. The aging trained rats showed an average 20 percent increase, while myelin density also improved.

"The neurons looked young again. They were full and robust. It's like a hose without water going through it appears collapsed. Run the water and it expands to its original size. Recovery happens," Lin said. "It indicates the brain is a lot more plastic. The training exercises reopen the hose and the rats recovered almost to the point of young rats."

de Villers-Sidani, who trained as a neurologist at McGill University, Canada, said he became interested in aging and dementia while doing clinical work at the UCSF Memory and Aging Center.

"Since I started my training, I saw hundreds of patients who had difficulty dealing with noisy situations. Almost everyone, if you measure it, experiences declines in visual and auditory-discrimination tasks. That's normal. That's universal," de Villers-Sidani said. "They may be slower to process information or more sensitive to interference, like the patient who, as he aged, had trouble riding his motorcycle on the highway because he couldn't keep track of all the cars around him."

The scientific context was that these changes occur over time and are may not be permanent, de Villers-Sidani said.

"We're arguing that if they're plastic, maybe they're reversible, rather than being permanent," he said. "If you're a violinist you have to practice to keep up your skills. You stop and everyone in the orchestra will notice if you haven't practiced for a year. It's the same with the brain. If you don't practice, your brain will degrade into a less precise machine, one less able to process signals."

Age-related is a big concern with people, de Villers-Sidani said.

"If we can sort out what normal brain aging is, then that will help us sort out pathological age-related diseases like Alzheimer's," he said.

Explore further: Neurobiologists uncover evidence of a 'memory code'

Related Stories

Neurobiologists uncover evidence of a 'memory code'

September 8, 2005

By examining how sounds are registered during the process of learning, UC Irvine neurobiologists have discovered a neural coding mechanism that the brain relies upon to register the intensity of memories based on the importance ...

Berries beneficial for brains

August 25, 2006

If humans are anything like rats, scientists at Tufts University in Boston may be on the road to discovering the fountain of youth for the human brain.

Stem cell activity deciphered in the aging brain

December 18, 2006

Neurobiologists have discovered why the aging brain produces progressively fewer new nerve cells in its learning and memory center. The scientists said the finding, made in rodents, refutes current ideas on how long crucial ...

Magnesium supplement helps boost brainpower

January 27, 2010

Neuroscientists at MIT and Tsinghua University in Beijing show that increasing brain magnesium with a new compound enhanced learning abilities, working memory, and short- and long-term memory in rats. The dietary supplement ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 20, 2010
This makes me wonder whether listening to complex sound sources, such as podcasts, forces the brain to keep exercised, forestalling aging effects. Some people I know listen to late night podcasts if they have trouble sleeping. Perhaps their brains may be aging less through this passive effort?
not rated yet Jul 20, 2010
It seems in this case that the difficulty of the auditory perceptual exercises was progressively increased, this would suggest that simply passively perceiving is not sufficient to achieve the improvements in neural function shown here.
not rated yet Jul 20, 2010
If a listener had to follow complex trains of thought, the auditory experiences wouldn't be passive. There are forms of meditation which challenge the brain to unravel complicated puzzles. Similarly, listening to interesting and complex ideas which demand attention would exercise the brain, much as the experiments in this case did. Neural functions would be challenged and functioning would improve.
not rated yet Jul 20, 2010
A lot has been made recently of the so called 'brain training' video games that seem to be proliferating on the market. However they have been shown to be ineffective in controlled trials as general cognitive boosters.

What they do improve is one's ability to perform that specific task, but it doesn't extend to a general benefit. Furthermore, once the subjects stopped playing the 'smart' games for a few weeks or months, when tested again, they showed no benefit from prior training. So, I guess, you have to keep doing many and varied cognitive (and physical) tasks to maintain the benefits over time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.