Scientists implant regenerated lung tissue in rats (w/ Video)

Jun 24, 2010

A Yale University-led team of scientists reports that it has achieved an important first step in regenerating fully functional lung tissue that can exchange gas, which is the key role of the lungs. Their paper appears in the June 24 issue of Science Express.

Lung disease accounts for around 400,000 deaths each year in the United States. Lung tissue is difficult to regenerate because it does not generally repair or regenerate beyond the microscopic level. The only current way to replace damaged adult is to perform , which is highly susceptible to and infection and achieves only 10% to 20% survival at 10 years.

The Yale team's goal was to see if it was possible to successfully implant tissue-engineered lungs, cultured in vitro, that could serve the lung's primary function of exchanging oxygen and carbon dioxide. They took adult rat lungs and first removed their existing cellular components, preserving the extracellular matrix and hierarchical branching structures of the airways and vascular system to use later as scaffolds for the growth of new lung cells.

They then cultured a combination of lung-specific cells on the extracellular matrix, using a novel bioreactor designed to mimic some aspects of the fetal lung environment. Under the fetal-like conditions of the bioreactor, the cells repopulated the decellularized matrix with functional lung cells. When implanted into rats for short intervals of time (45-120 minutes), the engineered lungs exchanged oxygen and carbon dioxide similarly to natural lungs.

This video is not supported by your browser at this time.
This is a tutorial on how tissue-engineered rat lung is transplanted. Credit: Yale University, Yale School of Medicine

This video is not supported by your browser at this time.
This video shows how lung tissue is engineered. Credit: Yale University School of Medicine

Lead author Laura Niklason, M.D., Ph.D., professor and vice-chair of the Departments of Anesthesiology and Biomedical Engineering at Yale University and a member of Yale Medical Group, said, "We succeeded in engineering an implantable lung in our that could efficiently exchange oxygen and , and could oxygenate in the blood. This is an early step in the regeneration of entire lungs for larger animals and, eventually, for humans."

The team found that the mechanical characteristics of the engineered lungs were similar to those of native tissues and, when implanted, were capable of participating in gas exchange. "Seeded and cultured epithelium displays remarkable hierarchical organization within the lung matrix, while seeded endothelial cells efficiently repopulate the lung vasculature, Niklason said.

The Yale team says this is an important first step, but a great deal more research must be done to see if fully functional lungs can be regenerated in vitro, implanted and sustained in their functioning. Niklason says that for this technology to be applicable to patients, it is likely that years of research with adult stem cells will be needed to repopulate lung matrices and produce fully functional lungs.

Explore further: Study finds that high fat diet changes gut microbe populations

More information: Citation: Science Express, June 24, 2010

Related Stories

Scientists grow new lungs using 'skeletons' of old ones

Jun 24, 2010

For someone with a severe, incurable lung disorder such as cystic fibrosis or chronic obstructive pulmonary disease, a lung transplant may be the only chance for survival. Unfortunately, it's often not a very good chance. ...

Rare lung disease cells indicate higher death risk

Jan 16, 2008

Large numbers of certain cells in the lungs of patients diagnosed with idiopathic pulmonary fibrosis may increase their chance of death, University of Cincinnati (UC) researchers have discovered.

Type of stem cell found to reside in transplanted lungs

Mar 08, 2007

A new study involving a type of stem cells from the lungs of transplant patients demonstrates for the first time that these progenitor cells reside in adult organs and are not derived from bone marrow, which leads to the ...

Study suggests new therapy for lung disease patients

Feb 07, 2008

A new study by researchers at Northwestern University's Feinberg School of Medicine may change current thinking about how best to treat patients in respiratory distress in hospital intensive care units.

Recommended for you

Organ transplant rejection may not be permanent

14 hours ago

Rejection of transplanted organs in hosts that were previously tolerant may not be permanent, report scientists from the University of Chicago. Using a mouse model of cardiac transplantation, they found that immune tolerance ...

Researchers find key mechanism that causes neuropathic pain

16 hours ago

Scientists at the University of California, Davis, have identified a key mechanism in neuropathic pain. The discovery could eventually benefit millions of patients with chronic pain from trauma, diabetes, shingles, multiple ...

Deep sea light shines on drug delivery potential

16 hours ago

A naturally occurring bioluminescent protein found in deep sea shrimp—which helps the crustacean spit a glowing cloud at predators—has been touted as a game-changer in terms of monitoring the way drugs ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.