For the first time, scientists capture very moment blood flow begins

June 3, 2010

By capturing movies of both the blood and vasculature of zebrafish embryos, each less than two millimeters long, researchers have been able for the first time to see the very moment that blood begins to flow.

The observations, reported online on June 3rd in show that the earliest blood flow, involving what appear to be hundreds of cells, begins all at once.

Remarkably, that onset of life-giving circulation takes more than a beating heart. In fact, remain stuck to the blood vessel wall initially, even after the heart starts to beat, says Atsuko Sehara-Fujisawa of Kyoto University.

"When most of the red blood cells finish their invasion into the vasculature, they are released into the circulation almost simultaneously," she says. "We could show that those blood cells release themselves into the flow, using 'molecular scissors' to disrupt their adhesion to and enter the circulation dependent on plasma flow. Without those scissors, blood cells stagnate on the blood vessel wall."

Those molecular scissors come in the form of a protease enzyme known as ADAM8, the researchers report.

These findings raise an obvious question: Why would the onset of primitive require such an active protease instead of just going with the flow, with blood cells entering the circulation one by one? First, the researchers say, proteolysis would allow for control over which blood cells enter the circulation and which get held back. It might also help to stop blood cells from entering the circulation too early, preventing leaks that might occur if blood vessels aren't fully formed, or avoiding stagnation before an adequate flow of plasma is established with the heartbeat, the researchers add. It may be that blood cells need plasma to flow before they can reach maturity.

The findings likely have application to other types of blood cells in and to blood flow in other animals, even humans, the researchers say, noting that ADAM8 is found at high levels in the blood of humans and mice into adulthood.

Explore further: Slipper-shaped blood cells

More information: Iida et al.: “Report: Metalloprotease-Dependent Onset of Blood Circulation in Zebrafish.” Publishing in Current Biology 20, 1-7, June 22, 2010. DOI 10.1016/j.cub.2010.04.052

Related Stories

Slipper-shaped blood cells

October 26, 2009

Red blood cells, which make up 45 percent of blood, normally take the shape of circular cushions with a dimple on either side. But they can sometimes deform into an asymmetrical slipper shape. A team of physicists have used ...

Measuring and modeling blood flow in malaria

November 23, 2009

When people have malaria, they are infected with Plasmodium parasites, which enter the body from the saliva of a mosquito, infect cells in the liver, and then spread to red blood cells. Inside the blood cells, the parasites ...

Protein identified that plays role in blood flow

September 18, 2008

For years, researchers have known that high blood pressure causes blood vessels to contract and low blood pressure causes blood vessels to relax. Until recently, however, researchers did not have the tools to determine the ...

Stem cell therapy grows new blood vessels

April 6, 2009

Research led by David Hess of the Robarts Research Institute at The University of Western Ontario has identified how to use selected stem cells from bone marrow to grow new blood vessels to treat diseases such as peripheral ...

Recommended for you

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...

Study shows mixed fortunes for Signy penguins

October 27, 2016

A forty year study on a remote Antarctic island shows that while populations of two penguin species are declining, a third is increasing. Analysis of census data from Signy Island in the South Orkney Islands reveals that, ...

How a fungus inhibits the immune system of plants

October 27, 2016

A newly discovered protein from a fungus is able to suppress the innate immune system of plants. This has been reported by research teams from Cologne and Würzburg in the journal Nature Communications.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.