Report describes the physics of the 'bends'

June 22, 2010

As you go about your day-to-day activities, tiny bubbles of nitrogen come and go inside your tissues. This is not a problem unless you happen to experience large changes in ambient pressure, such as those encountered by scuba divers and astronauts. During large, fast pressure drops, these bubbles can grow and lead to decompression sickness, popularly known as "the bends."

A study in the , which is published by the American Institute of Physics (AIP), may provide a physical basis for the existence of these bubbles, and could be useful in understanding .

A physiological model that accounts for these bubbles is needed both to protect against and to treat decompression sickness. There is a problem though. "These bubbles should not exist," says author Saul Goldman of the University of Guelph in Ontario, Canada.

Because they are believed to be composed mostly of nitrogen, while the surrounding atmosphere consists of both nitrogen and oxygen, the of the bubbles should be less than that of the surrounding atmosphere. But if this were so, they would collapse.

"We need to account for their apparent continuous existence in tissues in spite of this putative pressure imbalance," says Goldman.

If, as is widely believed, decompression sickness is the result of the growth of pre-existing gas bubbles in tissues, those bubbles must be sufficiently stable to have non-negligible half-lives. The proposed explanation involves modeling body tissues as soft elastic materials that have some degree of rigidity. Previous models have focused on bubble formation in simple liquids, which differ from elastic materials in having no rigidity.

Using the soft-elastic tissue model, Goldman finds pockets of reduced pressure in which nitrogen bubbles can form and have enough stability to account for a continuous presence of tiny bubbles that can expand when the ambient pressure drops. Tribonucleation, the phenomenon of formation of new gas bubbles when submerged surfaces separate rapidly, provides the physical mechanism for formation of new gas bubbles in solution. The rapid separation of adhering surfaces results in momentary negative pressures at the plane of separation. Therefore, while these tiny bubbles in elastic media are metastable, and do not last indefinitely, they are replaced periodically. According to this picture, tribonucleation is the source, and finite half-lives the sink, for the continuous generation and loss small in tissues.

Explore further: Bubble machine studies chaotic behavior

More information: The article, "Free energy wells for small gas bubbles in soft deformable materials" by Saul Goldman was published on April 26,2010 in the Journal of Chemical Physics. See:

Related Stories

Bubble machine studies chaotic behavior

December 12, 2005

Harvard University scientists say they've produced an example of self-organized complexity in a rudimentary microfluidic bubble generator.

Laser can spot illness before symptoms appear

November 12, 2007

It may not rank among the top 10 causes of death, but decompression sickness can be fatal. Instead of waiting for symptoms to appear, a University of Houston professor is developing a laser-based system that can diagnose ...

Mysterious nanobubble burst?

December 2, 2008

( -- The nanobubbles that develop on submerged surfaces should not really be able to exist. Because of the enormous internal pressure, they should disappear within a short time. Nevertheless, they sometimes last ...

The complex lives of bubbles revealed

June 3, 2010

( -- The mystery surrounding what happens when bubbles collide has finally been busted. And knowing how bubbles bounce apart and fuse together could improve the quality of ice-cream and champagne as well as increase ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 24, 2010
It's good to see more research into this. As a diver, I've always been amazed by how little we understand this phenomenon.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.