Ocean stirring and plankton patchiness

June 21, 2010
This near-true color MODIS satellite image shows a coccolithophore (phytoplankton) bloom in the Iceland Basin. Visible are the patches and filamentous structures of the bloom. The view is a bit like what you would see if you were an Astronaut in space and you took away Earth’s atmosphere. The image is a composite for the period July 5-11, 2007. The image spans 14-26˚W, 55-62˚N. Credit: NEODAAS/PML

Computer simulations performed by researchers at the National Oceanography Centre and the University of Glasgow show how oceanic stirring and mixing influence the formation and dynamics of plankton patches in the upper ocean.

Tiny free-floating marine plants called phytoplankton live in vast numbers in the sunlit upper . Through the process of photosynthesis, they build carbon compounds such as sugars starting with just water and carbon dioxide, which is thereby drawn down from the atmosphere.

Phytoplankton also need nutrients such as phosphate and iron, shortage of which can limit their population growth. They are also preyed upon by tiny planktonic animals called zooplankton.

"Interactions between phytoplankton, nutrients, zooplankton and the physical environment lead to complex dynamics, which we seek to understand using computer models," explained Emma Guirey, whose work on the problem was done as part of her PhD studies. "These complex dynamics can produce the patchiness of phytoplankton at the ocean surface that is invariably seen in satellite images and observed at sea during research cruises."

Guirey and her colleagues applied the methods of synchronisation theory - previously used to explain such phenomena as the co-ordinated flashing of fireflies along whole riverbanks. Initially they studied the balance between localised increases in phytoplankton populations and small-scale mixing, such as that due to breaking waves, in creating patches. Patchiness was found to persist despite the mixing which might be expected to smooth out the patches by blending them together.

The initial studies neglected the effects of stirring, or 'advection' by large scale such as the Gulf Stream and Kuroshio, but this is included in the most recent . This stirring stretches the patches out into long filaments. However, the patches still resist dispersal.

"What is exciting is that the inclusion of large-scale advection, far from disrupting plankton patchiness, actually creates the kind of filamentary structure that we often observe in real-life plankton populations. Application of synchronisation theory has given us a new perspective on the production of this complex patchiness," said Guirey.

Explore further: NASA Development May Help Solve Ocean Biology Problem

More information: Guirey, E., Bees, M., Martin, A. & Srokosz, M. Persistence of cluster synchronization under the influence of advection. Physical Review E 81, 051902 (2010). DOI:10.1103/PhysRevE.81.051902

Related Stories

NASA Development May Help Solve Ocean Biology Problem

February 11, 2005

NASA and university scientists have made a breakthrough in using satellites to study the tiny, free-floating ocean plants, called phytoplankton. The plants form the base of the ocean food chain and produce half of the oxygen ...

Study Solves Ocean Plant Mystery

August 31, 2006

A NASA-sponsored study shows that by using a new technique, scientists can determine what limits the growth of ocean algae, or phytoplankton, and how this affects Earth's climate.

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.