New molecular framework could lead to flexible solar cells

June 29, 2010 By Lauren Gold
The Dichtel group in the Department of Chemistry and Chemical Biology has developed a method to organize organic dyes into stacked, porous two-dimensional sheets. These materials may ultimately be incorporated into inexpensive, flexible solar cells.

(PhysOrg.com) -- Making better solar cells: Cornell University researchers have discovered a simple process - employing molecules typically used in blue jean and ink dyes - for building an organic framework that could lead to economical, flexible and versatile solar cells. The discovery is reported in the journal Nature Chemistry.

Think of solar cells, and you probably imagine the thick, heavy silicon panels on rooftops in sunny climates.

Those panels are effective, but they can also be expensive and unwieldy. In the search for a better alternative, a team led by William Dichtel, assistant professor of chemistry and chemical biology, has discovered a simple process for building an organic molecular framework that could pave the way for the development of more economical, flexible and versatile solar cells.

The discovery is reported in an article published online on June 20 by the journal Nature Chemistry.

Dichtel's strategy uses organic dye molecules assembled into a structure known as a covalent organic framework (COF). Organic materials have long been recognized as having potential to create thin, flexible and low-cost photovoltaic devices, but it has been proven difficult to organize their component molecules reliably into ordered structures likely to maximize device performance.

COFs, a class of materials first reported in 2005, offer a new way to address this long-range ordering problem; but until now, the known methods for creating them had significant limitations.

"We had to develop a completely new way of making the materials in general," Dichtel said. The strategy uses a simple acid catalyst and relatively stable molecules called protected catechols to assemble key organic molecules into a neatly ordered two-dimensional sheet. These sheets stack on top of one another to form a lattice that provides pathways for charge to move through the material.

The reaction is also reversible, allowing for errors in the process to be undone and corrected.

"The whole system is constantly forming wrong structures alongside the correct one," Dichtel said, "but the correct structure is the most stable, so eventually, the more perfect structures end up dominating." The result is a structure with high surface area that maintains its precise and predictable molecular ordering over large areas.

The researchers used X-ray diffraction to confirm the material's molecular structure and surface area measurements to determine its porosity.

At the core of the framework are molecules called phthalocyanines, a class of common industrial dyes used in products from blue jeans to ink pens.

Phthalocyanines are also closely related in structure to chlorophyll, the compound in plants that absorbs sunlight for photosynthesis. The compounds absorb almost the entire solar spectrum -- a rare property for a single organic material.

"For most organic materials used for electronics, there's a combination of some design to get the materials to perform well enough, and there's a little bit of an element of luck," Dichtel said. "We're trying to remove as much of that element of luck as we can."

The structure by itself is not a solar cell yet, but it is a model that will significantly broaden the scope of materials that can be used in COFs, Dichtel said. "We also hope to take advantage of their structural precision to answer fundamental scientific questions about moving electrons through organic materials."

Once the framework is assembled, the pores between the molecular latticework could potentially be filled with another organic material to form a light, flexible, highly efficient and easy-to-manufacture solar cell.

The next step is to begin testing ways of filling in the gaps with complementary molecules. "This is the very beginning of our work," he said.

Explore further: Molecular breakthrough for plastic electronics

More information: The article, "Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks," appears in the online edition of the journal Nature Chemistry, June 20, 2010.

Related Stories

Molecular breakthrough for plastic electronics

April 12, 2005

The potential applications for flexible plastic electronics are enormous -- from electronic books to radio frequency identification (RFID) tags to electronics for cell phones, personal digital assistants (PDAs) and laptop ...

A new structural view of organic electronic devices

September 12, 2005

Although still in the qualifying rounds, U.S. researchers are helping manufacturers win the race to develop low-cost ways to commercialize a multitude of products based on inexpensive organic electronic materials -- from ...

Zinc oxide gives green shine to new photoconductors

March 18, 2009

Photodetectors -- devices found in cell phones, digital cameras and other consumer gadgets that utilize photoconducting materials -- are a green technology in performance (converting light into electricity), but the manufacture ...

Renewable energies : the promise of organic solar cells

April 8, 2009

(PhysOrg.com) -- In the race to renewable energy, organic solar cells are now really starting to take off. They can be manufactured easily and cheaply, they have low environmental impact, and since they are compatible with ...

Scientists squeeze more out of metal-organic framework

January 12, 2010

(PhysOrg.com) -- Scientists at the U.S. Department of Energy's Argonne National Laboratory have discovered a new route to transform the structure of porous materials at industrially-accessible high pressures.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.