Researchers discover mechanism that limits scar formation

June 10, 2010

Researchers from the University of Illinois at Chicago have discovered that an unexpected cellular response plays an important role in breaking down and inhibiting the formation of excess scar tissue in wound healing.

Their study was published online this week in .

When an organism suffers severe injury, specialized cells are "recruited" to the wound site that rapidly produce such as collagen to provide structural support to the tissue, according to Lester Lau, professor of biochemistry and molecular biology at the UIC College of Medicine and principal investigator in the study.

Joon-Il Jun, a postdoctoral fellow working in Lau's lab and first author of the paper, found that recruited to the site of skin were entering a state of reproductive dormancy, or cell-cycle arrest, called senescence.

This was quite unexpected, Jun said. Until now senescence was believed to occur in cells that suffered -- to prevent them from proliferating and, possibly, becoming cancerous.

He discovered that the senescent fibroblasts were making proteins that degraded the extracellular matrix and accelerated the breakdown of collagen. The senescent cells also stopped making collagen.

"The accumulation of in the wound has the biological effect of inhibiting the formation of excess ," Jun said.

Jun also discovered that a protein called CCN1 is responsible for turning on the senescent state in fibroblasts. He was able to show that in mice with a mutated, non-functional form of CCN1, the fibroblasts at the site of a skin wound did not become senescent, and the wound developed excessive scar tissue.

Further, Jun was able to "rescue" the mutated mice by applying CCN1 protein topically to the skin wound, triggering fibroblast senescence and limiting the formation of scar tissue.

The discovery that senescence is a normal wound-healing response in the skin; that senescence in the wound serves an anti-fibrotic function; and that CCN1 is the critical protein that controls this process may prove important in understanding a wide range of pathological conditions related to tissue scarring, said Lau.

"For example, chronic injury to the liver from a number of causes, including viral infections, alcoholism, diabetes and obesity, leads to fibrosis and may progress to cirrhosis," Lau said. "After a heart attack, accumulation of scar tissue in the heart impairs its ability to pump efficiently."

The ability to control the formation of scar tissue, or fibrosis, has important implications for future therapies for treating wound-healing disorders, including organ damage where functional tissue is replaced with scar tissue, Lau said.

Explore further: New mechanical insights into wound healing and scar tissue formation

Related Stories

Artificial skin system can heal wounds

December 20, 2007

A new study in Artificial Organs tested the effects of a wound dressing created with hair follicular cells. The findings reveal that skin substitutes using living hair cells can increase wound healing.

Skin care: new research into scar-free healing

January 21, 2008

New research from the University of Bristol shows that by suppressing one of the genes that normally switches on in wound cells, wounds can heal faster and reduce scarring. This has major implications not just for wound victims ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.