Breaking Good: Study examines durability of glass with ties to nuclear waste storage

June 29, 2010
In a first-of-its-kind study, scientists at Pacific Northwest National Laboratory determined how durable four-component glass is when aluminum atoms are replaced by boron atoms and vice versa.

(PhysOrg.com) -- In a first-of-its-kind study, scientists at Pacific Northwest National Laboratory determined how durable four-component glass is when aluminum atoms are replaced by boron atoms and vice versa. By determining the effect of these elements, scientists can better predict how water interacts with minerals and glass. Water-glass interactions matter to people working to glassify liquid and sludge-like waste from nuclear weapons into a safer, solid form. Water-mineral interactions are also of interest to geochemist and agricultural scientists who want to know how minerals weather.

As with any power source, the safety of workers, the environment, and nearby populations must be considered. In nuclear power, this means trapping or immobilizing certain radioactive elements in the waste. In addition, nuclear waste from decades-old weapons sites must be permanently and safely stored. This research supports continuing efforts to manufacture a vitrified form that safely encapsulates the waste.

Using several spectrometers including EMSL's 900-MHz spectrometer, five glass samples with different ratios of and aluminum were studied. These samples were four-component glass. These glasses are so named because it contains four major nonradioactive parts of vitrified atomic waste: alumina, boron oxide, sodium oxide, and silica. These four components play a significant role in the determining the chemical durability of glass.

The spectrometry results were combined with flow-through dissolution experiments. The flow-through experiments allowed the scientists to evaluate the relationship between the atomic structure and the rate of glass dissolution.

The scientists found that water determines how fast the glass dissolves. Water breaks apart bonds between aluminum and oxygen as well as silicon and oxygen under certain conditions (noted in previous studies). Determining how substituting other elements weakens or strengthens water's desire to break apart the bonds is critical in understanding the processes that control water's interactions with minerals and .

This research is part of ongoing work at Pacific Northwest National Laboratory and elsewhere to answer the questions about chemically durable forms.

Explore further: On the way to the perfect glass

More information: Pierce EM, LR Reed, WJ Shaw, BP McGrail, JP Icenhower, CF Windisch Jr, EA Cordova, and J Broady. 2010. "Experimental Determination of the Effect of the Ratio of B/Al on Glass Dissolution along the Nepheline (NaAlSiO4) -- Malinkoite (NaBSiO4) Join." Geochimica et Cosmochimica Acta 74(9):2634-2654. DOI:10.1016/j.gca.2009.09.006

Related Stories

On the way to the perfect glass

May 27, 2005

Researchers from the United Kingdom, France and the DUBBLE beamline at the European Synchrotron Radiation Facility (ESRF) have made a step forward in research on glass. They have monitored the change in the structure of ...

Hanford clean up to take longer, cost more

December 1, 2005

A secret government study says soaring costs are among the latest problems plaguing clean up of the Hanford Nuclear Reservation, north of Richland, Wash.

Cracking a controversial solid state mystery

February 6, 2009

(PhysOrg.com) -- Scientists can easily explain the structural order that makes steel and aluminium out of molten metal. And they have discovered the molecular changes that take place as water turns to ice. But, despite the ...

GE and Hitachi want to use nuclear waste as a fuel

February 18, 2010

(PhysOrg.com) -- One of the world's biggest providers of nuclear reactors, GE Hitachi Nuclear Energy (a joint venture of General Electric and Hitachi), wants to reprocess nuclear waste for use as a fuel in advanced nuclear ...

Recommended for you

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.