Fast-tracking the manufacture of glasses

June 29, 2010

Old glass is not the same as new glass -- and the difference is not just due to manufacturing techniques. Unlike crystalline solids, glasses change as they age, increasing packing density and stability. Ideally, a glass should be cooled slowly, maybe over 10,000 years or so, but that is not usually practical.

Research reported in the details the production of highly stable films of by physical vapor deposition. Researchers used alternating current nanocalorimetry to evaluate the heat capacity of the thin glass films. Heat capacity provides a way to probe the fundamental structure of the solid because it is related to particle vibrations. Heat capacity values were observed that are the equivalent to significantly aged conventional glasses.

"We like to call these glasses 'impossible materials' because their properties match things that would take a million years to manufacture using conventional techniques," says author Mark Ediger. The research is an international collaboration combining "interesting materials" from the University of Wisconsin-Madison and a "cool technology" from the University of Rostock, Germany.

Ediger sees potential application of these techniques in manufacturing organic electronic devices such a photovoltaics. Current devices tend to wear out faster than manufacturers would like. "I am optimistic that we are learning to manipulate properties in a predictable way," he says. "If we can make an organic electronic material in ten minutes that would otherwise take a million years to prepare, we can manufacture things that people would not have considered before."

Explore further: Scientists Formulate Intelligent Glass That Blocks Heat Not Light

More information: The article, "Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry" by Kenneth L. Kearns et al will appear in the Journal of Chemical Physics. See: jcp.aip.org/

Related Stories

On the way to the perfect glass

May 27, 2005

Researchers from the United Kingdom, France and the DUBBLE beamline at the European Synchrotron Radiation Facility (ESRF) have made a step forward in research on glass. They have monitored the change in the structure of ...

Rare earth metal enhances phosphate glass

December 15, 2009

(PhysOrg.com) -- Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, ...

Metallic Glass Yields Secrets Under Pressure

March 16, 2010

(PhysOrg.com) -- Metallic glasses are emerging as potentially useful materials at the frontier of materials science research. They combine the advantages and avoid many of the problems of normal metals and glasses, two classes ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Probing the limits of wind power generation

September 2, 2015

(Phys.org)—Wind turbine farms now account for an estimated 3.3 percent of electricity generation in the United States, and 2.9 percent of electricity generated globally. The wind turbine industry is growing along all vectors, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.