Fast-tracking the manufacture of glasses

June 29, 2010

Old glass is not the same as new glass -- and the difference is not just due to manufacturing techniques. Unlike crystalline solids, glasses change as they age, increasing packing density and stability. Ideally, a glass should be cooled slowly, maybe over 10,000 years or so, but that is not usually practical.

Research reported in the details the production of highly stable films of by physical vapor deposition. Researchers used alternating current nanocalorimetry to evaluate the heat capacity of the thin glass films. Heat capacity provides a way to probe the fundamental structure of the solid because it is related to particle vibrations. Heat capacity values were observed that are the equivalent to significantly aged conventional glasses.

"We like to call these glasses 'impossible materials' because their properties match things that would take a million years to manufacture using conventional techniques," says author Mark Ediger. The research is an international collaboration combining "interesting materials" from the University of Wisconsin-Madison and a "cool technology" from the University of Rostock, Germany.

Ediger sees potential application of these techniques in manufacturing organic electronic devices such a photovoltaics. Current devices tend to wear out faster than manufacturers would like. "I am optimistic that we are learning to manipulate properties in a predictable way," he says. "If we can make an organic electronic material in ten minutes that would otherwise take a million years to prepare, we can manufacture things that people would not have considered before."

Explore further: Scientists Formulate Intelligent Glass That Blocks Heat Not Light

More information: The article, "Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry" by Kenneth L. Kearns et al will appear in the Journal of Chemical Physics. See:

Related Stories

On the way to the perfect glass

May 27, 2005

Researchers from the United Kingdom, France and the DUBBLE beamline at the European Synchrotron Radiation Facility (ESRF) have made a step forward in research on glass. They have monitored the change in the structure of ...

Rare earth metal enhances phosphate glass

December 15, 2009

( -- Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, ...

Metallic Glass Yields Secrets Under Pressure

March 16, 2010

( -- Metallic glasses are emerging as potentially useful materials at the frontier of materials science research. They combine the advantages and avoid many of the problems of normal metals and glasses, two classes ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.