Energy-efficient plastic production

June 1, 2010

Davide Crapanzano of the University of Twente (The Netherlands) has demonstrated the conditions under which a new catalytic membrane can be used for the cheaper, faster and more energy-efficient production of raw materials for the plastics industry. In this way propane can be more quickly converted into propene, and then for example into polypropene, which is used as a raw material for garden furniture, car components and other products.

Most plastics are manufactured from , and the processing of crude oil generates many alkanes, which are hydrocarbons that can really only be used as fuel. If these alkanes are converted into compounds that can be used as building blocks for plastics, however, they can be used in many other ways. Davide Crapanzano of the University of Twente has demonstrated the conditions under which a new catalytic membrane can be used to selectively convert alkanes into ingredients for plastic products such as garden furniture and car components.

In the petrochemical industry the conversion of alkanes into monomers, the building blocks of plastics, is carried out through selective oxidation. In this process oxygen is used to change the hydrocarbons into the desired molecules. Selective oxidation has been used on a large scale for many years. The great disadvantage of the process, however, is that it only produces a small amount of the end product, because the desired molecules continue reacting very quickly, with the result that they combust, leaving CO2 and water. That results in high costs, many waste products and high energy use to separate the desired products from all the unwanted products.

Crapanzano developed a new way of avoiding these drawbacks. Instead of mixing the alkane with oxygen, the PhD student used a membrane that is capable of conducting the . On one side of the membrane oxygen ions are produced from , while on its other side the oxygen ions selectively react with the alkane, for example converting propane into propene. This prevents the desired products from oxidizing any further. Davide investigated which materials are capable of reacting selectively with propane, and the conditions under which this is possible. It turned out that the concentration of the oxygen ions in particular has a major influence. The potential cost reductions are huge.

Crapanzano obtained his PhD on 28 May from the Faculty of Science and Technology.

Explore further: Road to greener chemistry paved with nano-gold

Related Stories

Road to greener chemistry paved with nano-gold

October 24, 2005

The selective oxidation processes that are used to make compounds contained in agrochemicals, pharmaceuticals and other chemical products can be accomplished more cleanly and more efficiently with gold nanoparticle catalysts, ...

Combination of processes results in cleaner petrol

March 9, 2006

One problem confronting the oil industry is that extracted mineral oil (due to increasing scarcity) is becoming heavier and 'dirtier'. This is reflected, for instance, in a higher content of aromatics (which among other things ...

Renewable Raw Materials

May 29, 2006

Petroleum and natural gas reserves are getting smaller and smaller. It is thus a real waste to burn up these valuable resources for heat or transportation especially as "black gold" is also the most important starting material ...

Biomass as a source of raw materials

May 12, 2009

For the protection of the environment, and because of the limited amount of fossil fuels available, renewable resources, such as specially cultivated plants, wood scraps, and other plant waste, are becoming the focus of considerable ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.