Diamonds and the holy grail of quantum computing

June 29, 2010

Since Richard Feynman's first envisioned the quantum computer in 1982, there have been many studies of potential candidates -- computers that use quantum bits, or qubits, capable of holding an more than one value at a time and computing at speeds far beyond existing silicon-based machines for certain problems. Most of these candidate systems, such as atoms and semiconducting quantum dots, work for quantum computing, but only at very low temperatures.

Now a team of researchers from the Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences and the Hefei National Laboratory for Physical Sciences at the Microscale at the University of Science and Technology of China has made a step toward a warmer solution.

As reported in the journal , the team is exploring the capabilities of diamond nitrogen vacancy (NV) materials. In this material, a "molecule" at the heart of an artificially created diamond film consists of a nitrogen atom (present as in impurity amid all those carbon atoms) and a nearby vacancy, a place in the crystal containing no atom at all. These diamond structures offer the possibility of carrying out data storage and at room temperature.

One of the challenges of this technology is the difficulty of coupling two of the NV centers in separate nanocrystals of diamond. To make a quantum computer, many diamond-NV centers need to be coupled (made quantum coherent with each other), encoding the information in each, and operations based on their interactions (or couplings) must be undertaken. Mang Feng of the Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences and his collaborators present an idea that could lead to a quantum mechanical coupling of these NV centers, called entanglement. This proof of principle is now ready to be extended to multiple operations, which is by no means a simple accumulation of the operations.

"Our research is another step in realizing the potential of the long-envisioned quantum computers with techniques available currently or in the near-future," states Dr. Feng, "Continued advances could stimulate further exploration in condensed matter physics, quantum information science and diamond making technology."

Explore further: Dark spins light up

More information: The article, "One-step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity" by Wan-li Yang et al will appear in the journal Applied Physics Letters. See:

Related Stories

Dark spins light up

October 25, 2005

Want to see a diamond? Forget the jewellery store - try a physics laboratory. In the November issue of Nature Physics, Ryan Epstein and colleagues demonstrate the power of their microscope for imaging individual nitrogen ...

UCSB physicists move one step closer to quantum computing

November 20, 2009

Physicists at UC Santa Barbara have made an important advance in electrically controlling quantum states of electrons, a step that could help in the development of quantum computing. The work is published online today on ...

Turning down the noise in quantum data storage

January 19, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process of reading the ...

Scientists look beyond diamond for quantum computing

April 30, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects ...

Physicists set guidelines for qubit candidates

May 4, 2010

( -- To build a quantum computer, it's essential to be able to quickly and efficiently manipulate the quantum states of qubits. The qubits, which are the basic unit of quantum information, can be composed of many ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Jun 30, 2010
Pure, artificial, nitrogen-flawed diamonds. Nothing like exploiting flaws. Remember the sugar cube data storage concept?

Here it is.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.