Barrier to faster integrated circuits may be mere speed bump, scientists say

June 29, 2010

Integrated circuits, which enable virtually every electronics gadget you use on a daily basis, are constantly being pushed by the semiconductor industry to become smaller, faster, and cheaper. As has happened many times in the past and will continue in the future, integrated circuit scaling is perpetually in danger of hitting a wall that must be maneuvered around.

According to Maxime Darnon, a researcher at the French National Center for Scientific Research, in order to continue increasing the speed of , interconnect insulators will require an upgrade to porous, low-dielectric constant materials. Darnon and colleagues discuss the details in the , which is published by the American Institute of Physics (AIP).

"The integration of a replacement, porous SiCOH (pSiCOH), however, poses serious problems such as an unacceptable 'roughening' that occurs during processing," explains Darnon. "This is considered a 'showstopper' to faster integrated circuits at the moment, so a fundamental understanding of the roughening mechanisms that occur during the etch process of integrated circuit manufacturing is highly desirable to material designers and etch-process engineers.

Darnon's research team proposes a mechanism for the roughening of pSiCOH materials etched in a fluorocarbon-based plasma. They've shown that the problematic roughness results from a cracking of the denser top surface under ion bombardment, and that this roughness propagates through a slower etching of the dense top surface than the modified porous material beneath it. Perhaps more importantly, the team recommends ways to minimize this phenomenon so that the "showstopper" will only be a speedbump on the road to faster integrated circuits.

Explore further: DARPA Selects Lucent Technologies to Provide Nanotechnology For Advanced Military Systems

More information: The article, "Roughening of Porous SiCOH Materials in Fluorocarbon Plasmas" by Maxime Darnon et al will appear in the Journal of Applied Physics. See: jap.aip.org/

Related Stories

Memristor chip could lead to faster, cheaper computers

March 17, 2009

(PhysOrg.com) -- The memristor is a computer component that offers both memory and logic functions in one simple package. It has the potential to transform the semiconductor industry, enabling smaller, faster, cheaper chips ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

CaptBarbados
not rated yet Jun 30, 2010
They need a pattern on that surface.

Much like the pattern that appears naturally, in underwater sand.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.