Wine-making yeast shows promise for bioethanol production

May 13, 2010

Researchers from the Stanford University School of Medicine have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioethanol alternative to 'fossil fuels'. Combining new high-throughput genome sequencing technology with traditional genetic methods, this study highlights the previously unknown potential of natural S. cerevisiae strains to convert five-carbon sugars such as xylose into ethanol. Details are published May 13 in the open-access journal PLoS Genetics.

S. cerevisiae is the primary organism used in the fermentation process required for industrial bioethanol production. However, despite voraciously fermenting the six-carbon sugars, such as glucose, found in cornstarch or cane, it was not thought to be able to ferment the five-carbon sugars that are abundant in agricultural wastes or dedicated crops like . As the industry moves towards plant-based ethanol, a strain of yeast that can ferment both types of sugar equally well is highly desirable.

Therefore, Jared Wenger and Katja Schwartz sought to identify previously unstudied Saccharomyces yeast strains with some ability to ferment xylose. They found a number of strains, primarily used in wine-making, which could metabolize this important sugar in order to grow slowly. They studied one strain in particular, applying a new genome sequencing technology to determine the genetic basis of its growth - the presence of a single gene they named XDH1.

Although the ability of these naturally occurring yeasts to grow on this sugar is modest and they are still not as capable at using xylose as other, genetically-modified strains, this discovery may lead to the development of new, industrially-applicable strains of S. cerevisiae for use in large-scale bioethanol production.

Explore further: Super-fermenting fungus genome sequenced

More information: Wenger JW, Schwartz K, Sherlock G (2010) Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae. PLoS Genet 6(5): e1000942. doi:10.1371/journal.pgen.1000942

Related Stories

Super-fermenting fungus genome sequenced

March 5, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Sugar-hungry yeast to boost biofuel production

March 29, 2010

Engineering yeast to transform sugars more efficiently into alcohols could be an economically and environmentally sound way to replace fossil fuels, say scientists presenting at the Society for General Microbiology's spring ...

Recommended for you

Secrets of a heat-loving microbe unlocked

September 4, 2015

Scientists studying how a heat-loving microbe transfers its DNA from one generation to the next say it could further our understanding of an extraordinary superbug.

Plants also suffer from stress

September 4, 2015

High salt in soil dramatically stresses plant biology and reduces the growth and yield of crops. Now researchers have found specific proteins that allow plants to grow better under salt stress, and may help breed future generations ...

Ancient walnut forests linked to languages, trade routes

September 4, 2015

If Persian walnut trees could talk, they might tell of the numerous traders who moved along the Silk Roads' thousands of miles over thousands of years, carrying among their valuable merchandise the seeds that would turn into ...

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.