Improving UAVs using holographic adaptive optics

May 3, 2010
Air Force Office of Scientific Research-supported holographic, adaptive, optics research may help transform software into computer-free, electronics for unmanned aerial vehicles, high energy lasers and free-space optical communications that will enable each to run faster and more efficiently than before. Credit: Geoff Andersen, USAF Academy

Air Force Office of Scientific Research-supported holographic, adaptive, optics research may help transform software into computer-free, electronics for unmanned aerial vehicles, high energy lasers and free-space optical communications that will enable each to run faster and more efficiently than before.

Dr. Geoff Andersen, senior researcher at the Laser and Optics Research Center at the United States Air Force Academy in Colorado Springs, is leading a team of researchers who have successfully demonstrated the latest new type of , which incorporate holograms. The conventional, computer-based technology has been in use for over two decades, but is not suitable to some military applications, including UAVs because of its required calculations and high computing costs.

The new technology will be able to be incorporated on unmanned aerial vehicles because it is very compact and lightweight.

"We will see hugely improved images from these new surveillance platforms that holographic adaptive optics will make possible," said Andersen.

"The current system for UAV imagery, lasers and optics is computer software driven, but the next phase is to replace that with an called High Altitude Large Optics," he said. "Such a system would be orders of magnitude faster than anything else available, while being much more compact and lightweight."

It is hoped that HALOS will become the standard in adaptive optics of the future. It may also create entirely new markets for sharper telescopes and camera images that will be used for military purposes.

Explore further: Zinc-Air Batteries Will Extend Mission Times Of NASA Micro Aerial Vehicles

Related Stories

UCF, Holochip in Licensing Agreement for Zoom Lens Patents

July 20, 2007

The University of Central Florida has signed a licensing agreement with Holochip Corp. for a portfolio of technologies that will allow zoom lenses, such as those used in digital cameras and camera phones, to be manufactured ...

World's fastest and most sensitive astronomical camera

June 18, 2009

The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1,500 finely exposed images per second even when observing extremely faint objects. ...

Research is shattering traditioinal notions of laser limits

December 7, 2009

Air Force Office of Scientific Research and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world's smallest semiconductor laser, which may have ...

Recommended for you

More to rainbows than meets the eye

August 25, 2016

In-depth review charts the scientific understanding of rainbows and highlights the many practical applications of this fascinating interaction between light, liquid and gas.

Chemists explore outer regions of periodic table

August 25, 2016

A little known—and difficult to obtain—element on the fringes of the periodic table is broadening our fundamental understanding of chemistry. In the latest edition of the journal Science, Florida State University Professor ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

DNA chip offers big possibilities in cell studies

August 25, 2016

A UT Dallas physicist has developed a novel technology that not only sheds light on basic cell biology, but also could aid in the development of more effective cancer treatments or early diagnosis of disease.

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.