Strategy to Quantify, Purify Surface Proteins Also Shows Effects on Protein Translocation

May 4, 2010
Schematic strategy of membrane protein enrichment and quantification.

( -- It's always good when you can get two discoveries for the price of one. A strategy developed by scientists at Pacific Northwest National Laboratory to quantify and purify proteins on the surface membranes of cells has also revealed other proteins that have potentially novel roles in cell substrates.

Even more important, the researchers also found that deletion of a type II secretion had minimal effects on total , but significant effects on protein translocation to the cell membrane. Their results will appear in the .

Surface membrane proteins are essential for maintaining normal biological functions in cells, and often are the "first responders" to environmental stimuli. Despite their biological significance, membrane proteins can be low in abundance and insoluble, making them challenging to quantify and purify. Developing a strategy that can probe changes in membrane protein abundance will improve the understanding of overall biological cellular functions.

The PNNL team met this challenge by first enriching surface expressed by Shewanella oneidensis MR-1 using a membrane-impermeable chemical probe, which allowed labeling of the surface exposed peptides. By linking this method with post-digestion stable isotope labeling, the surface proteins can be quantified. The team identified about 400 proteins, of which 79% were predicted to be localized in the membrane. The successful determination of membrane protein abundance change caused by genetic deletion of one of their translocation pathways further demonstrated the specificity and sensitivity of this strategy in quantifying the membrane proteome abundance.

This work was supported by the U.S. Department of Energy Office of Biological and Environmental Research's (DOE-BER's) Genomics Science Program.

Explore further: Scientists devise method to study membrane proteins

More information: Zhang H, RN Brown, W Qian, ME Monroe, SO Purvine, RJ Moore, MA Gritsenko, L Shi, MF Romine, JK Fredrickson, L Paša-Tolic, RD Smith, and MS Lipton. 2010. "Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling." Journal of Proteome Research published online April 9, 2010, doi:10.1021/pr9009113

Related Stories

Scientists devise method to study membrane proteins

April 14, 2004

Scientists at the University of Virginia Health System have come up with a protocol to extract proteins from membranes by using chemicals that allow them to be reversibly folded and refolded. The proteins can then be studied ...

Instruction Manual for Creating a Molecular Nose

February 12, 2007

An artificial nose could be a real benefit at times: this kind of biosensor could sniff out poisons, explosives or drugs, for instance. Researchers at the Max Planck Institute for Polymer Research and the Max Planck Institute ...

Major step for drug discovery and diagnostics

February 12, 2009

Researchers from Nano-Science Center, University of Copenhagen and National Centre for Scientific Research, France have developed a general method to study membrane proteins. This method can be used to screen several thousand ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.