Scientists use biomedical technique to image marine worm

May 18, 2010
This three-quarter view of the burrowing marine worm, Nephtys hombergii, was imaged using micro-computed X-ray tomography. Credit: John Dinley

Scientists have for the first time successfully imaged the internal tissues of a soft bodied marine worm at high resolution using a technique borrowed from biomedical science. The findings are published in the Journal of Microscopy.

"Invertebrate are important for the functioning of , and studies of their internal anatomy are needed to understand their physiology, ecology and evolution," explained John Dinley of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton.

"Techniques such as dissection and the cutting of sections for light or studies are time consuming and destructive. What is really needed is a reliable, non-invasive method that can be used in the laboratory," he added.

In conjunction with Professor Ian Sinclair of the University of Southampton's Department of Engineering and other colleagues, Dinley has helped develop the use of a technique called micro-computed x-ray tomography (micro-CT) for scanning the internal structure soft-bodied marine worms.

In micro-CT scanning, the object to be scanned is rotated within a stationary x-ray beam, and magnified images are received onto a detector screen. The researchers have successfully used a bench-top micro-CT scanner to produce high-definition images of the internal structure of the predatory, burrowing worm Nephtys hombergii, specimens of which were collected from the sands of Poole Harbour.

"We believe that this is the first time this technique has been developed and successfully applied to the of invertebrates without the use of tissue enhancing stains or radio-opaque fluids," said Dinley.

Impressive three-dimensional rotating and fly-through images have also been produced, which can be invaluable in the assessment of many aspects of functional anatomy.

As a direct result of this work, a micro-CT machine has been installed in the Natural History Museum in London. Now museum specimens or even living specimens can be scanned and their internal organs carefully examined and compared with this rapid, non-invasive and non-destructive technique.

"Large-scale comparative anatomical studies are now feasible that will lead to greater evolutionary insights," says Dinley.

Explore further: X-ray method improves soft tissue detail

Related Stories

New X-ray microscope for science and industry

July 3, 2006

Australian researchers have taken X-ray technology to a new level, developing and using high-powered microscopes to see inside objects and capture high-resolution images of their subsurface structures.

Enigmatic sea urchin structure catalogued

June 9, 2009

A comprehensive investigation into the axial complex of sea urchins (Echinoidea), an internal structure with unknown function, has shown that within that group of marine invertebrates there exists a structural evolutionary ...

Bat researchers no longer flying blind on echolocation

January 24, 2010

Researchers at The University of Western Ontario led an international and multi-disciplinary study that sheds new light on the way that bats echolocate. With echolocation, animals emit sounds and then listen to the reflected ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.