Post-mortem of a Comet: Scientists put the Comet Wild 2 under the microscope

May 28, 2010

Researchers at the University of Leicester are examining extraterrestrial material from a comet to assess the origins of our Solar System.

For the first time ever, material samples from a comet were collected in the Stardust Mission. It was the first mission since the Apollo landings to have successfully returned extraterrestrial material for scientists to study in the laboratory. At the University of Leicester’s Space Research Centre and at Diamond Light Source, the UK’s national synchrotron facility - a series of super microscopes - scientists are currently finding out what a comet is really made of.

The Stardust probe travelled 3.2 billion km in space, and flew through the coma of Comet Wild2 collecting tiny grains of dust, returning them back to Earth in 2006. They are being dissected at NASA and the University of California and being sent to a few laboratories around the world, with the University of Leicester being one of them.

By developing micro manipulation techniques, researchers at the University of Leicester have further dissected the tiny samples to study the comet to atomic precision under a . This ‘post-mortem’ of Comet Wild2 has revealed for the first time the true composition of a comet.

Hitesh Changela, one of the researchers in the project, said:

“Understanding the true nature of comets may also help us to answer one of the fundamental questions in science - how the evolved in its early stages and how water and organics were delivered to the Earth. It’s an exciting time when we can use new techniques to analyse the most distant Solar System bodies in our laboratories at Leicester.”

Funding for Hitesh’s PhD has been provided by the Science and Technology Facilities Council (STFC).

The researchers are obtaining unprecedented about the smallest grains of the comet, with sizes less than 1/10th the width of a human hair. The Diamond synchrotron is an electron particle accelerator that produces highly intense X-ray beams which can be used to delve deep into matter and materials to reveal information on the atomic and molecular scale. These X-rays were used to probe Stardust to the highest sensitivity.

Dr. John Bridges of the Space Research Centre at the University of Leicester is the principal investigator of this project. He commented:

“Comet Wild2 is a big analytical challenge as the total mass of samples is about 1 ten thousandth of a gram. By comparison the Apollo missions brought back 380 kg. The Microfocus Spectroscopy beamline at Source enabled us to examine these tiny particles and map the elements within them. These are exciting times in planetary science and once we have worked out what this comet is made of we can use these new techniques to study asteroids and the planets in unprecedented detail.”

Using a globally unique technique at Diamond which enables the mapping of the widest range of elements, the group found X-ray signatures of iron oxides. Further research at Leicester has shown that the small grains of iron oxide contained in the Stardust samples may have formed by low temperature aqueous activity on Wild2. However, other grains formed at very high temperature - around 2000oC which is not what was expected from this icy that would have formed in the coldest, outermost reaches of the Solar System. This unexpected discovery has raised new questions about how these ‘dustbins’ of the early Solar System really formed.

This research is being presented to the public at the University of Leicester on June 24.

Explore further: Stardust lands in London: scientists look to comet for vital clues about Solar System

Related Stories

Traveling space particles reveal secrets of comets

March 11, 2006

Particles of comet dust that traveled from the far reaches of the solar system to Earth are traveling the United States, including a stop at Argonne, where scientists are studying the particles to learn more about comets ...

Stardust Findings May Alter View of Comet Formation

March 14, 2006

Samples from comet Wild 2 have surprised scientists, indicating the formation of at least some comets may have included materials ejected by the early sun to the far reaches of the solar system.

Scientists fine-tuning methods for Stardust analysis

March 22, 2006

On Sunday, January 15, NASA's Stardust mission landed safely with the first solid comet fragments ever brought back to Earth. Members of the mission's Preliminary Examination Team, including several from the Carnegie Institution's ...

Key 'Stardust' spacecraft find questioned

April 9, 2007

Spanish scientists say one of the major discoveries from last year's "Stardust" space mission might have resulted from rocket booster contamination.

First measurement of the age of cometary material

February 25, 2010

( -- Though comets are thought to be some of the oldest, most primitive bodies in the solar system, new research on comet Wild 2 indicates that inner solar system material was transported to the comet-forming ...

Recommended for you

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

NASA selects investigations for future key planetary mission

October 1, 2015

NASA has selected five science investigations for refinement during the next year as a first step in choosing one or two missions for flight opportunities as early as 2020. Three of those chosen have ties to NASA's Jet Propulsion ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.