New research may help patients with intestinal failure, other malabsorptive disorders

May 4, 2010

New treatments for intestinal failure and other intestinal absorption disorders are a step closer to the patients who need them after a discovery in Kelly Tappenden's University of Illinois laboratory.

"There are so few therapies for persons with these illnesses, many of them . Surgery may save a patient's life, but with so much removed, they're unable to digest and absorb nutrients. They have to rely totally on intravenous feeding, which really reduces their quality of life," said Tappenden, a U of I professor of nutrition and gastrointestinal physiology.

Years of research in her lab show that butyrate, a short-chain fatty acid, helps intestine grow and become more functional. "To develop effective treatments, though, we needed to understand why butyrate has this effect. Now we understand the mechanism behind it."

According to Tappenden, butyrate increases the creation of . But, beyond that, it fortifies these new cells, preparing them to be more functional by increasing the transcription of a protein called GLUT2 that plays an important role in intestinal function by transporting sugars into the body.

"It's actually a double hit in terms of benefits. Not only does butyrate cause the intestine to grow in size, but it increases the number of functional proteins in the cells that are made. Those cells transport more nutrients, thereby reducing the amount of intravenous nutrients needed by these patients," she said.

Knowing how all this works is really important for strategizing and fine-tuning therapies for intestinal absorption disorders, said Tappenden. "Right now, butyrate is not available in the bags of nutrients used for intravenous feeding. But our research tells us that we should at least be encouraging patients to consume more carbohydrates and dietary fiber because use these nutrients to make butyrate."

To learn more about butyrate's action at the cellular level, Tappenden isolated human cells (Caco2-BBe cells), which behave very much like cells from the small intestine.

"We transfected the promoter portion of the GLUT2 gene in these small intestine-like cells and then exposed them to a variety of short-chain fatty acids—a cocktail of acetate, propionate, and butyrate, as well as each of them individually. Then we watched to see which of them would start manufacturing GLUT2, expecting to see that butyrate alone was responsible," she said.

Sure enough, butyrate alone turned on the promoter responsible for making the GLUT2 intestinal transporter.

"This gives us insight into the cellular mechanisms whereby butyrate could really help people with intestinal failure," she said. "Why? Because it's increasing this important protein that causes the intestine to absorb more nutrients."

The next step is experimenting with administering prebiotics and probiotics to newborn piglets, an excellent model for the human infant because of their similar metabolism and physiology.

The prebiotics contain soluble fiber, the fuel bacteria need to make short-chain fatty acids, such as butyrate. Probiotics contain bacteria that reside in the colon and serve an important role in intestinal function and immunity, she said.

The results of the piglet study should be available this summer.

Explore further: Hybrid molecule causes cancer cells to self-destruct

More information: This study was published in the November/December 2009 issue of the Journal of Parenteral and Enteral Nutrition.

Related Stories

Hybrid molecule causes cancer cells to self-destruct

January 3, 2007

By joining a sugar to a short-chain fatty acid compound, Johns Hopkins researchers have developed a two-pronged molecular weapon that kills cancer cells in lab tests. The researchers cautioned that their double-punch molecule, ...

The making of an intestinal stem cell

March 5, 2009

Researchers have found the factor that makes the difference between a stem cell in the intestine and any other cell. The discovery reported in the March 6th issue of the journal Cell, a Cell Press publication, is an essential ...

Colon cancer shuts down receptor that could shut it down

April 13, 2009

Though a high-fiber diet has long been considered good for you and beneficial in staving off colon cancer, Medical College of Georgia researchers have discovered a reason why: roughage activates a receptor with cancer-killing ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.