Nanotech discovery could lead to breakthrough in infrared satellite imaging technology

May 18, 2010
Rensselaer Polytechnic Institute Professor Shan-Yu Lin has developed a new nanotechnology-based “microlens” that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices. The device, pictured, leverages the unique properties of nanoscale gold to “squeeze” light into the tiny holes in its surface. Credit: Rensselaer Polytechnic Institute

Researchers from Rensselaer Polytechnic Institute have developed a new nanotechnology-based "microlens" that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices.

By leveraging the unique properties of nanoscale gold to "squeeze" light into tiny holes in the surface of the device, the researchers have doubled the detectivity of a quantum dot-based infrared detector. With some refinements, the researchers expect this new technology should be able to enhance detectivity by up to 20 times.

This study is the first in more than a decade to demonstrate success in enhancing the signal of an infrared detector without also increasing the noise, said project leader Shawn-Yu Lin, professor of physics at Rensselaer and a member of the university's Future Chips Constellation and Engineering Research Center.

"Infrared detection is a big priority right now, as more effective infrared technology holds the potential to benefit everything from homeland security to monitoring climate change and deforestation," said Lin, who in 2008 created the world's darkest material as well as a coating for solar panels that absorbs 99.9 percent of light from nearly all angles.

"We have shown that you can use nanoscopic gold to focus the light entering an , which in turn enhances the absorption of photons and also enhances the capacity of the embedded quantum dots to convert those photons into electrons. This kind of behavior has never been seen before," he said.

Results of the study, titled "A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots," were published online recently by the journal . The paper also will appear in a forthcoming issue of the journal's print edition. The U.S. Air Force Office of Scientific Research funded this study.

The detectivity of an infrared photodetector is determined by how much signal it receives, divided by the noise it receives. The current state-of-the art in photodetectors is based on mercury-cadmium-telluride (MCT) technology, which has a strong signal but faces several challenges including long exposure times for low-signal imaging. Lin said his new study creates a roadmap for developing quantum dot infrared photodetectors (QDIP) that can outperform MCTs, and bridge the innovation gap that has stunted the progress of infrared technology over the past decade.

The surface plasmon QDIPs are long, flat structures with countless tiny holes on the surface. The solid surface of the structure that Lin built is covered with about 50 nanometers - or 50 billionths of a meter - of gold. Each hole is about 1.6 microns - or 1.6 millionths of a meter - in diameter, and 1 micron deep. The holes are filled with quantum dots, which are nanoscale crystals with unique optical and semiconductor properties.

The interesting properties of the QDIP's gold surface help to focus incoming light directly into the microscale holes and effectively concentrate that light in the pool of quantum dots. This concentration strengthens the interaction between the trapped light and the quantum dots, and in turn strengthens the dots' ability to convert those photons into electrons. The end result is that Lin's device creates an electric field up to 400 percent stronger than the raw energy that enters the QDIP.

The effect is similar to what would result from covering each tiny hole on the QDIP with a lens, but without the extra weight, and minus the hassle and cost of installing and calibrating millions of microscopic lenses, Lin said.

Lin's team also demonstrated in the journal paper that the nanoscale layer of gold on the QDIP does not add any noise or negatively impact the device's response time. Lin plans to continue honing this new technology and use gold to boost the QDIP's detectivity, by both widening the diameter of the surface holes and more effective placement of the .

"I think that, within a few years, we will be able to create a gold-based QDIP device with a 20-fold enhancement in signal from what we have today," Lin said. "It's a very reasonable goal, and could open up a whole new range of applications from better night-vision goggles for soldiers to more accurate medical imaging devices."

Explore further: Quantum Dots See In The Dark

More information: The paper is available online at:

Related Stories

Quantum Dots See In The Dark

June 16, 2004

Researchers at the University of Southern California and the University of Texas at Austin have built and tested a device based on nanostructures called quantum dots that can sensitively detect infrared radiation in a crucial ...

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Single Atom Quantum Dots Bring Real Devices Closer (Video)

January 27, 2009

( -- Single atom quantum dots created by researchers at Canada’s National Institute for Nanotechnology and the University of Alberta make possible a new level of control over individual electrons, a development ...

Quantum dots as midinfrared emitters

February 23, 2009

( -- “People are interested in the mid-infrared,” Dan Wasserman tells Infrared light has a wavelength longer than visible light, and many molecules have numerous very strong optical resonances ...

Recommended for you

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) May 18, 2010
Could this technology be used in James Webb Telescope ?
20 times better quality images ?
5 / 5 (1) May 18, 2010
could this be used with a Phase Conjugate Tracking System?
not rated yet May 19, 2010
Could this be used in the infrared scanners at airports?
not rated yet May 19, 2010
equipment is finalized for the Webb so no. as for the other two this technology definitely has an opportunity to enhance all kinds of areas of science!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.