Study finds key protein controls T-cell proliferation

May 4, 2010

New research has identified that a key protein called PEA-15 stops T-cell proliferation by blocking the cell's ability to reproduce. The control of T-cell proliferation is essential in preventing certain blood cancers and autoimmune diseases, as well as the orchestration of the immune response to infection. Findings of the study are reported in a recent online issue of The FASEB Journal, a publication of The Federation of American Societies for Experimental Biology.

A team of researchers from the University of Hawai'i Cancer Research Center, Rutgers University and Washington University in St. Louis examined the normal function of PEA-15, which acts as a in some cancers including brain, ovarian and breast cancers. They found that PEA-15 normally controls lymphocyte (white blood cell) .

To determine the normal role of this protein, investigators examined mice lacking PEA-15. They found that those without the protein had both spatial learning disabilities and a pronounced increase in lymphocyte (white blood cell) proliferation. Upon closer inspection, they further found that loss of PEA-15 particularly affected a group of lymphocytes called T-cells. T-cells are involved in killing invading pathogens as well as stimulating more long-term immunity. The PEA-15 protein works by acting as a brake on a group of proteins that activate cell cycling and proliferation when they recognize a signal from an invading organism. Lymphocytes without PEA-15 continue proliferating beyond normal response levels as if they lack the "brakes" to stop.

"Understanding how T-cell expansion is controlled at the molecular level should lead to new methods to control the immune response during infection as well as perhaps helping the development of novel ways to utilize these cells to attack tumors," said Joe Ramos, Ph.D. principal investigator and assistant professor in natural products and cancer biology at the University of Hawaii. "Dysregulation of PEA-15 function might also play a role in the development or progression of lymphomas or leukemias," he added. "Finding ways to regain normal function of PEA-15 might contribute to identification of new approaches to treat these cancers. "

Explore further: Columbia research lifts major hurdle to gene therapy for cancer

Related Stories

Chopping off protein puts immune cells into high gear

January 24, 2007

The complex task of launching a well-organized, effective immune system attack on specific targets is thrown into high gear when either of two specific enzymes chop a protein called LAG-3 off the immune cells leading that ...

Mechanisms involved with tumor relapse identified

March 13, 2007

Researchers at Virginia Commonwealth University’s Massey Cancer Center studying the interaction between the immune system and cancer cells have identified interferon gamma as one of the signaling proteins involved with ...

Protein helps immune cells to divide and conquer

March 8, 2009

Researchers at the University of California, San Diego School of Medicine have identified a key protein that is required for immune cells called B lymphocytes to divide and replicate themselves. The rapid generation of large ...

High levels of PEA-15 shrink breast cancer tumors

April 20, 2009

Overexpression of PEA-15, which binds and drags an oncoprotein out of the cell nucleus where it fuels cancer growth, steeply reduced breast cancer tumors in a preclinical experiment, researchers at The University of Texas ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.