A new gold standard: Using gold to eliminate cancerous tumors

May 07, 2010

(PhysOrg.com) -- Gold isn't exactly what comes to mind when you think of treatments for cancer. But researchers at Ohio University are exploring whether the metallic element can actually save lives.

Michael Carlson, a third-year doctoral student in chemistry and biochemistry at Ohio University, is studying how small particles of gold, heated by a laser, can kill malignant cells.

In 2005, researchers from the University of Southern California and the Georgia Institute of Technology discovered that nanoparticles (tinier than the diameter of a human red blood cell) of gold can attach themselves to cancer cells and absorb enough heat to destroy them. The particles also made it easier for doctors to identify tumors on the computer screens used to navigate surgeries in the operating room, which, in turn, helped the surgeons to attack and remove the cancerous tissue.

Carlson and his advisor, Professor of Chemistry and Biochemistry Hugh Richardson, are conducting further studies to learn more about the process of how these relatively non-toxic gold particles combat the tumors. They hope to compile more data in order to help develop and refine the technology for medical treatments.

“Current treatments such as chemotherapy and radiation are pretty invasive procedures that harm the sick patient,” Carlson explained. “The ultimate goal would be to successfully use gold nanoparticles to non-invasively destroy the tumor.”

Richardson and his colleagues have been studying the heating of at Ohio University since 2005. He has published more than 11 scientific articles about the in metal nanoparticles.

In the new studies, Carlson and Richardson examine the heat generated by the as they absorb the light energy of the laser. This will help other researchers determine what happens to the cancer cells before they are killed.

“It is obvious that the cells are becoming hot, but we want to know if the energy simply dissipates from the cell, if the cell melts, or if a bubble forms inside the cell where the cell then explodes,” Carlson said. “Or it may be something completely different.”

So far, the scientists have found that the laser allows the gold particles to reach a heat that is ten times hotter than the boiling point of water. Carlson’s research also suggests that the gold nanostructures’ change in temperature reaches a threshold, despite the amount of energy applied to the particles, which is indicative of possible micro-bubble formation.

Originally interested in becoming a doctor, Carlson was attracted to cancer research because of its ability to help large numbers of people.

“If you can create a way to help people rather than a single individual, like developing a mechanism that is applicable to all cancer patients, you are doing a great thing,” he said.

Explore further: Scientists use nanoparticles to shut down mechanism that drives cancer growth

Related Stories

Using Gold Nanoparticles to Hit Cancer Where It Hurts

Feb 15, 2010

(PhysOrg.com) -- Taking gold nanoparticles to the cancer cell and hitting them with a laser has been shown to be a promising tool in fighting cancer, but what about cancers that occur in places where a laser light can’t ...

Nanorods show benefits cancer treatment

Mar 14, 2006

Researchers at the Georgia Institute of Technology and the University of California, San Francisco, have found an even more effective and safer way to detect and kill cancer cells. By changing the shapes of ...

Targeting tumors using tiny gold particles

May 04, 2009

(PhysOrg.com) -- It has long been known that heat is an effective weapon against tumor cells. However, it's difficult to heat patients' tumors without damaging nearby tissues.

Recommended for you

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 07, 2010
Well well, a new therapy that has intrinsic value!
The golden "silver bullet"!
Nanogold and lasers reminds me of something, oh yeah, Iron and high frequency magnetism from 20 years ago.
And Iron is already present in cancer cells.
Here is just one link: http://www.azunim...ics.html
Here's an even better one on iron:http://www.artemi...cer.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.