Trapping giant Rydberg atoms for faster quantum computers

May 6, 2010
An artist's interpretation of Rydberg atom trapping in an optical lattice. Credit: Kelly Younge

In an achievement that could help enable fast quantum computers, University of Michigan physicists have built a better Rydberg atom trap. Rydberg atoms are highly excited, nearly-ionized giants that can be thousands of times larger than their ground-state counterparts.

As a result of their size, interactions between can be roughly a million times stronger than between regular atoms. This is why they could serve as faster quantum circuits, said Georg Raithel, associate chair and professor in the Department of Physics. Quantum computers could solve problems too complicated for conventional computers. Many scientists believe that the future of computation lies in the quantum realm.

A paper on this research is published in the current edition of . The work will be presented at the American Physical Society's Division of Atomic, Molecular and Optical Physics meeting in late May.

Raithel's team trapped the atoms in what's called an optical lattice---a crate made of interfering laser beams.

"The optical lattice is better than any other Rydberg atom trap for or high-precision spectroscopy," Raithel said. "Compared with other traps, optical lattices minimize energy level shifts in the atoms, which is important for these applications."

Raithel and physics doctoral students Kelly Younge and Sarah Anderson started with ground-state atoms of the soft metal rubidium. At room temperature, the atoms whiz around at the speed of sound, about 300 meters per second. The researchers hit them with lasers to cool and slow them to 10 centimeters per second.

"That's about the speed of a mosquito," Younge said. "Cooling lasers combined with a magnetic field allows us to trap the ground-state atoms. Then we excite the atoms into Rydberg states."

In a rubidium atom, just one electron occupies the outer valence shell. With precisely tuned lasers, the researchers excited this electron so that it moved 100 times farther away from the nucleus of the atom, which classified it as a Rydberg atom. That valence electron in this case is so far away from the nucleus that it behaves almost as if it's a free electron.

To trap the Rydberg atoms, the researchers took advantage of what's called the "ponderomotive force" that allows them to secure a whole atom by holding fast to one electron---the sole valence shell particle in the Rydberg atoms. The , formed with intense, interfering laser beams, is what provides the ponderomotive force.

"The laser field holds on to the electron, which behaves almost as if it were free, but the residual weak atomic binding force still holds the atom together. In effect, the entire atom is trapped by the lasers," Raithel said.

The physicists used a technique called "microwave spectroscopy," to determine how the lattice affected the Rydberg atoms, and in general how the atoms behaved in the trap.

"Essentially, we could track the motion of the atoms during the experiment. We could tell if the were sitting in the bottom of a well in the electromagnetic field, or if they were roaming over many wells. In this way, we could optimize the performance of the trap," Younge said.

Explore further: ‘Atom-chips’ research wins multi-million pound funding

More information: The paper is called "State-dependent Energy Shifts of Rydberg Atoms in a Ponderomotive Optical Lattice."

Related Stories

‘Atom-chips’ research wins multi-million pound funding

December 20, 2006

Physicists at The University of Nottingham are to use refrigerators made from light that can cool atoms to the lowest temperature in the Universe to develop the next generation of ultra-small electronic devices.

Portable Precision: A New Type of Atomic Clock

December 10, 2008

( -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement ...

Scientists Make First Observation of Unique Rydberg Molecule

April 28, 2009

( -- When Enrico Fermi investigated the Rydberg atom in the '30s, he never imagined that the giant atoms could form molecules. Later, in the '70s and '80s, theoretical physicist Chris Greene predicted that Rydberg ...

Scientists discover giant Rydberg atom molecules

June 24, 2009

A group of University of Oklahoma researchers led by Dr. James P. Shaffer, Homer L. Dodge Department of Physics and Astronomy, have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining ...

Giant Rydberg atoms confined in a micro-glass cell

January 14, 2010

Rydberg atoms are highly sensitive atoms, as one electron is only loosely bound. Compared to 'normal' atoms which are one tenth of a nanometer in size those giant atoms are ~100 nanometers large. Due to their sensitivity ...

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.