New technology enables machines to detect microscopic pathogens in water

April 2, 2010

Detecting one of the world's most common pathogens in drinking water soon may no longer be bottle-necked under a laboratory microscope.

Pathogens, meet technology.

A new system developed by Texas AgriLife Research automatically scans a water sample and points to potential much faster than what humans can accomplish. Hence, the diseases these pathogens may be nipped in the bud before making people sick.

"Currently, it takes humans a long time and a lot of effort to peer through microscopes and look for green dots (indicating the presence of cryptosporidium or giardia pathogens)," said Dr. Suresh Pillai, AgriLife Research scientist and professor of at Texas A&M University. "This system is more accurate and can provide results immediately for users around the world."

Pillai and his team have been working on the issue since 1996 when he first proposed that to fine-tune the search for pathogens, scientists needed to find a way to "substitute humans with automatic image analysis systems." By the year 2000, "we actually proved that it could be done," Pillai said, who then spent the next nine years seeking a commercial partner who could "move this technology into the marketplace."

Eventually, Pillai found Smart Imaging Technology in Houston. Together they sought additional funding from the state through the Texas Emerging Technology Fund to bring the process into reality. Pillai said the company is in the "final stages" of bringing the detection system online.

This video is not supported by your browser at this time.
Pathogens, meet technology. A new system developed by Texas AgriLife Research automatically scans a water sample and points to potential pathogens much faster than what humans can accomplish. Hence, the diseases these pathogens may be nipped in the bud before making people sick. Here's an interview with developer Dr. Suresh Pillai. Credit: Texas AgriLife Research

"Basically, you put a slide under a microscope, and it will automatically scan the microscope and put potential flags on all potential objects of interest," Pillai explained. "Then the software that was developed as part of this project can hone down on every one of those potential objects and query it to see whether it is the right image based on a number of parameters that we have developed for it to detect."

The automated system was developed specifically to seek out cryptosporidium and giardia -- pathogens that are transmitted via water and cause severe diarrhea in people with compromised immune systems. They are spread globally through contaminated .

"But we can develop the same thing for other pathogens of interest - anything that is large enough to be detected with a microscope," Pillai said, pointing to Toxoplasma gondii, the pathogen that can pass from cats to pregnant women and cause fetal death. "Right now we have very few people in the country who can identify Toxoplasma gondii under a ."

Whether a private company or a university operates the automated microscopic detection of pathogens, the capability could also be offered via the Internet nationally as well as to other countries where money to purchase the equipment is not available, Pillai noted. Because it is automated, the computerized system could be available globally every day and around the clock.

Pillai envisions a variety of applications for this technology, including as a teaching tool for undergraduate and graduate students, a training tool for employees, as a resource for researchers working with protozoan pathogens, and as a means of fee-for-service for pathogen detection.

"We are looking at ways how this technology can address some of the key challenges facing pathogen detection in food and water. We are actively seeking funding to take it to that next level," he said.

Explore further: Joint electron-beam research grant aims at Mars - and the stars

Related Stories

Molecules Under Hammer

February 13, 2007

How do you get information from a preparation that is transparent? How can you still see a three-dimensional image through a microscope? Dutch researcher Rajesh S. Pillai investigated a new way of illuminating preparations ...

PANTHER sensor quickly detects pathogens

March 4, 2008

Researchers at MIT Lincoln Laboratory have developed a powerful sensor that can detect airborne pathogens such as anthrax and smallpox in less than three minutes.

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.