Skeleton key for cancer metastasis

April 26, 2010
An actin-rich invadopodium pushes through the basement membrane (red, left), allowing the tumor cell to follow (right). Credit: Schoumacher, M., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200909113.

Cancer cells need all three of their cytoskeletons—actin, microtubules, and intermediate filaments—to metastasize, according to a study published online on April 26 in the Journal of Cell Biology.

A cancer cell in an epithelial layer is trapped unless it can force through the basement membrane, which cordons off the tissue. start to dissolve the basement membrane with enzymes that build up within extensions called invadopodia. How the different components of the cytoskeleton collaborate to spring the cell remains unclear. To find out, Danijela Vignjevic and colleagues (Institut Curie) followed as they started their breakout.

They found that a tumor cell escapes in three stages. First, stumpy protrusions dig into the basement membrane. These structures then elongate into "mature" invadopodia. Finally, the rest of the cell follows. In culture, crawling cells produce extensions that carry either bundles of actin or an actin mesh. In the cells, both forms of actin were necessary for invadopodia to form and grow. However, microtubules and intermediate filaments were only essential for invadopodia to lengthen.

The researchers suggest a model for this initial step of metastasis. Growing actin bundles push out a protrusion, which the actin mesh stabilizes as it elongates. Only if the invadopodium stretches beyond 5 microns do microtubules and intermediate filaments get involved. most likely elongate the invadopodium by delivering materials such as enzymes to the tip. Intermediate filaments, meanwhile, may brace the growing extension.

Explore further: Research could lead to new treatments for brain injuries

More information: Schoumacher, M., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200909113

Related Stories

Research could lead to new treatments for brain injuries

November 20, 2007

MIT researchers have identified a family of proteins key to the formation of the communication networks critical for normal brain function. Their research could lead to new treatments for brain injury and disease.

How actin networks are actin'

January 2, 2008

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access ...

Understanding the migration of cancer cells

June 23, 2008

[B]Activity of regulatory proteins for the growth of filopodia and lamelopodia clarified[/B] Lamellipodia are veil-shaped protrusions of the plasma membrane, that can turn into upward-curled ruffles if they fail to adhere ...

Fibroblasts invade at a snail's pace

February 2, 2009

A transcription factor known to drive the formation of fibroblasts during development also promotes their ability to invade and remodel surrounding tissues, report Rowe et al. in the February 9, 2009 issue of the Journal ...

Recommended for you

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.

Threat posed by 'pollen thief' bees uncovered

October 9, 2015

A new University of Stirling study has uncovered the secrets of 'pollen thief' bees - which take pollen from flowers but fail to act as effective pollinators - and the threat they pose to certain plant species.

Mapping the protein universe

October 9, 2015

To understand how life works, figure out the proteins first. DNA is the architect of life, but proteins are the workhorses. After proteins are built using DNA blueprints, they are constantly at work breaking down and building ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.