Scientists discover marker indicating the developmental potential of stem cells

April 16, 2010

Researchers in China are reporting that they have found a way to determine which somatic cells -- or differentiated body cells -- that have been reprogrammed into a primordial, embryonic-like state are the most viable for therapeutic applications.

In a paper published online last week by the , two collaborating teams from institutes at the Chinese Academy of Sciences point to a marker they found in induced-pluripotent , or iPS cells, taken from mice. That marker is a cluster of small RNA whose expression appears strictly correlated with levels of , or "stemness." (The more pluripotent, the more likely a stem cell will develop into the desired tissue, organ or being.)

"We identified a genomic region encoding several genes and a large cluster of microRNAs in the mouse genome whose expression is high in fully pluripotent embryonic stem cells and iPS cells but significantly reduced in partially pluripotent iPS cells, indicating that the Dlk1-Dio3 region may serve as a marker," said Qi Zhou, a researcher at the CAS Institute of Zoology and co-author of the paper. "No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotent levels."

After the creation of the first iPS cells in Japan in 2006, Zhou and others set out to determine whether the reprogrammed adult cells are versatile enough to generate an entire mammalian body, as embryonic stem cells can.

Then, last summer, Zhou announced that his team had reprogrammed of mice, injected them into embryos and created 27 live offspring, which clearly demonstrated that iPS cells can, like , produce healthy adults. Though lauded as a huge step forward, they also found not all iPS cells were perfect: Many of the iPS cell lines used did not produce mice, and some of the mice that were produced had abnormalities.

"The success rate of obtaining iPS cells with full pluripotency was still extremely low, which significantly hindered the application of iPS cells in therapeutics and other aspects," Zhou said.

Believing that there might be some intrinsic gene expression difference between the lines of iPS cells with varying levels of pluripotency that could be identified at early culture stages, so that less viable lines could be abandoned and more viable lines focused on, Zhou teamed up with bioinformatics specialist Xiu-Jie Wang, who works at the Chinese academy's Institute of Genetics and Developmental Biology.

Together, their groups profiled the small expression patterns of ES and iPS cell lines from different genetic backgrounds and with different pluripotent levels using Solexa technology.

"There are nearly 50 miRNAs encoded in this region, and those expressed miRNAs all exhibited consistent and significant expression differences between stem-cell lines with different pluripotency levels," Wang said. "With this discovery, iPS cells with different pluripotency can be distinguished in their early phases, which will, thus, significantly improve the production of full pluripotent iPS cells and promote their application in disease therapy," Wang said.

As stem cells can be applied in the treatment of many diseases related to tissue replacement or organ implantation, Zhou said, if the team's findings also are true for humans, "it will cause a revolution in stem-cell research and the application of it in the very near future."

Explore further: Mature B cells reprogrammed to stem-cell-like state

More information: The paper can be found at www.jbc.org/content/early/2010/04/13/jbc.M110.131995

Related Stories

Stem cell research puts interstate rivalry on hold

September 4, 2008

Victoria and New South Wales have put aside their competitive interstate rivalry to collaborate on a stem cell research project, as announced by Innovation Minister Gavin Jennings and NSW Minister for Science and Medical ...

Researchers generate functional neurons from somatic cells

February 24, 2009

In a new study, researchers were able to generate functionally mature motor neurons from induced pluripotent stem (iPS) cells, which are engineered from adult somatic cells and can differentiate into most other cell types. ...

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.