Scientists Use Atomic Physics Codes to Study Coronal Mass Ejections

April 7, 2010
Figure 1. Left: Simulated evolution of the various charge states of iron (Fe) with heliocentric distance at a location within a model CME. The dominant Fe16+ and Fe11+ are highlighted in bold. Reconnection commencing at about three solar radii heats and ionizes the plasma. Right: The final simulated charge state distribution for comparison with in situ observations, showing the characteristic "two peaked" structure commonly seen in CME observational data. Martin Laming and Cara Rakowski of the NRL SSD developed the ionization evolution code, and Ben Lynch of the Space Sciences Laboratory at UC Berkeley performed the magnetohydrodynamic simulation.

(PhysOrg.com) -- Giant eruptions of ionized gas, or plasma, from the Sun called coronal mass ejections [CMEs] produce solar energetic particles that cause spacecraft anomalies and communication interruptions, and can have significant adverse effects on Global Positioning Systems. Scientists at the Naval Research Laboratory's Space Science Division are studying CMEs in an effort to better understand and predict their impact on instrumentation.

The composition of CMEs can tell us much about how they erupt and propagate through interplanetary space. The NRL research team is now coupling computer codes that compute the evolution of CME ion charge states (elements such as Carbon or Iron with different numbers of electrons removed) to the output of numerical magnetohydrodynamic simulations of CME dynamics.

The ionization evolution code used in the simulations, developed by Martin Laming and Cara Rakowski of the Space Science Division, incorporates the latest and most accurate theoretical data for ionization and recombination (removal and attaching electrons to an element) of all ions up to Nickel in the periodic table.

Of the abundant elements in the solar atmosphere, Iron [Fe] is highly useful to study, because it has many charge states to evolve through. As a simulated CME eruption proceeds, plasma heating beginning at a heliocentric distance of about four solar radii increases the charge states of the ions in the .

Figure 2. View of CME eruption simulation performed by Ben Lynch of the Space Sciences Laboratory at UC Berkeley. The white diamond marks the plasma element for which the ionization balance is computed above. At three solar radii it would have been moving through the current sheet connecting the plasmoid to the Sun, where plasma heating occurs by reconnection.

The final simulated Fe charge state distribution exhibits a characteristic "two-peaked" structure that is commonly detected in CME observational data for Fe, with charge states around Fe16+ and Fe11+ dominant, which indicates that basic features of the new coupled numerical model are correct.

Laming explains that a research goal of this work is to produce quantitative inferences about the energy released, and estimate for example the energy going into solar energetic particles that constitute a major radiation hazard for space borne instrumentation. Such inferences are only feasible because the energy required to produce specific ions is understood from atomic physics.

Explore further: Scientists weather a space storm to find its origin

Related Stories

Scientists weather a space storm to find its origin

August 2, 2005

A team of researchers from the UK and France used SOHO, ACE and the four Cluster spacecraft to study a huge eruption on the Sun, tracing its progress from birth to when it reached Earth.

Our Suns fiery outbursts seen in 3D

July 17, 2006

UK solar scientists are eagerly awaiting the launch of NASAs STEREO mission which will provide the first ever 3D views of the Sun. STEREO (Solar TErrestrial RElations Observatory) comprises two nearly identical observatories ...

Solar Eruption Seen in Unprecedented Detail

May 27, 2008

On April 9, the Sun erupted and blasted a bubble of hot, ionized gas into the solar system. The eruption was observed in unprecedented detail by a fleet of spacecraft, revealing new features that are predicted by computer ...

The Surprising Shape of Solar Storms (w/Video)

April 14, 2009

(PhysOrg.com) -- Twin NASA spacecraft have provided scientists with their first view of the speed, trajectory, and three-dimensional shape of powerful explosions from the sun known as coronal mass ejections, or CMEs. This ...

STEREO Reveals the Anatomy of a Solar Storm in 3D

April 28, 2009

(PhysOrg.com) -- Observations from NASA's twin Solar Terrestrial Relations Observatory (STEREO) spacecraft have allowed scientists to reveal for the first time the speed, trajectory, and three-dimensional shape of solar explosions ...

Recommended for you

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.