Rhodopsin phototrophy promotes bacterial survival

April 27, 2010

Bacteria in the ocean can harvest light energy from sunlight to promote survival thanks to a unique photoprotein. This novel finding by a team of scientists in Sweden and Spain is to be published next week in the online, open access journal PLoS Biology.

"It was long thought that phytoplankton were the only organisms in the sea that could harvest the energy from sunlight for growth," says Dr. Jarone Pinhassi, scientist in marine microbiology at Linnaeus University, Sweden. These microscopic planktonic organisms carry out the same chlorophyll driven photosynthesis process as green plants on land.

In 2000, American scientists discovered that many marine bacteria contain a gene in their genome that encodes a new kind of light-harvesting pigment: proteorhodopsin. Proteorhodopsin is related to the pigment in the retina that enables human vision in less intense light. Now, a decade later, the first direct evidence for the functioning of proteorhodopsin in native marine bacteria is presented, based on mutational analysis in a marine bacterium. At the same time the present study shows that proteorhodopsin-mediated phototrophy (the process of acquiring energy from light) allows marine bacteria to better survive periods of starvation in an often nutrient-depleted ocean.

The importance of understanding novel mechanisms for to efficiently use solar energy is obvious if one considers that a liter of seawater on average contains around a billion bacteria, many of which contain proteorhodopsin. The activity of these bacteria play a crucial role in the by determining oceanic production of CO2 through respiration and determining how the fluxes of energy that are fixed by are channeled through marine food chains.

"Bacteria in the surface ocean are swimming in a sea of light, and it may not be all that surprising that evolution has favored microorganisms that can use this abundant energy source," says Pinhassi.

Explore further: Odd energy mechanism in bacteria analyzed

More information: Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, et al. (2010) Proteorhodopsin Phototrophy Promotes Survival of Marine Bacteria during Starvation. PLoS Biol 8(4): e1000358. doi:10.1371/journal.pbio.1000358

Related Stories

Odd energy mechanism in bacteria analyzed

November 4, 2005

Scientists at Oregon State University have successfully cultured in a laboratory a microorganism with a gene for an alternate form of photochemistry – an advance that may ultimately help shed light on the ecology of the ...

Marine bacteria are cutting cooling gas emissions

April 5, 2006

Marine bacteria are reducing the amount of an important climate cooling gas given off from our seas and studies on enzymes from a model bacterium could help to understand this important process, say scientists today (Wednesday ...

Every Microbe in Its Place

August 29, 2006

Marine bacteria populations vary according to ocean conditions, say University of Southern California and Columbia University marine biologists. The finding could improve reach and accuracy of ocean-change models.

Bacteria from sponges make new pharmaceuticals

September 4, 2007

Thousands of interesting new compounds have been discovered inside the bodies of marine sponges according to scientists speaking today at the Society for General Microbiology’s 161st Meeting at the University of Edinburgh, ...

Food source threatened by carbon dioxide

December 10, 2007

Carbon dioxide increasing in the atmosphere may affect the microbial life in the sea, which could have an impact on a major food source, warned Dr Ian Joint at a Science Media Centre press briefing today.

Study Links Photosynthesis Genes to Marine Virus Fitness

February 4, 2009

(PhysOrg.com) -- A recent Northeastern University study has shown, for the first time, the effect of individual genes on the fitness of a marine species at the ecosystem level. Using his innovative computer simulation model, ...

Recommended for you

A novel toxin for M. tuberculosis

August 4, 2015

Despite 132 years of study, no toxin had ever been found for the deadly pathogen Mycobacterium tuberculosis, which infects 9 million people a year and kills more than 1 million.

New biosensors for managing microbial 'workers'

August 4, 2015

Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their ...

Fish that have their own fish finders

August 4, 2015

The more than 200 species in the family Mormyridae communicate with one another in a way completely alien to our species: by means of electric discharges generated by an organ in their tails.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.