New research may revolutionize ceramics manufacturing

April 7, 2010

Researchers from North Carolina State University have developed a new way to shape ceramics using a modest electric field, making the process significantly more energy efficient. The process should result in significant cost savings for ceramics manufacturing over traditional manufacturing methods.

Ceramics make up significant components of an array of products, including insulators, spark plugs, fuel cells, body armor, gas turbines, nuclear rods, high temperature ball bearings, high temperature and heat shields.

At issue are crystalline defects found in , such as ceramics. "One of these defects is called a grain boundary, which is where crystals with atoms aligned in different directions meet in the material," says Dr. Hans Conrad, emeritus professor of materials science and engineering at NC State and co-author of the study. These boundaries have electrical charges.

"We found that if we apply an electric field to a material, it interacts with the charges at the and makes it easier for the crystals to slide against each other along these boundaries. This makes it much easier to deform the material." In other words, the material becomes superplastic - so a can be shaped into a desirable form using a small amount of force.

"We've found that you can bring the level of force needed to deform the down to essentially zero, if a modest field is applied," Conrad says. "We're talking between 25 and 200 volts per centimeter, so the electricity from a conventional wall socket would be adequate for some applications."

These findings mean that manufacturers who make anything out of ceramics will be able to do so using less energy. "It will make manufacturing processes more cost-effective and decrease related pollution," Conrad says. "And these findings also hold promise for use in the development of new ceramic body armor." Conrad is planning to do additional work using this approach to fabricate ceramic body armor with better properties at a lower cost.

Explore further: Study may expand applied benefits of super-hard ceramics

More information: The research, "Influence of an applied dc electric field on the plastic deformation kinetics of oxide ceramics," is published in the journal Philosophical Magazine.

Related Stories

Energy from ceramics

August 17, 2006

Micro fuel cells are already being acclaimed as an alternative to batteries. However, producing them from hundreds of tiny separate parts is complex and expensive. An alternative is now available: ceramic fuel cells that ...

Modern ceramics help advance technology

May 8, 2008

Many important electronic devices used by people today would be impossible without the use of ceramics. A new study published in the Journal of the American Ceramic Society illustrates the use of ceramic materials in the ...

Engineers crack ceramics production obstacle

March 13, 2009

(PhysOrg.com) -- Engineers at the University of Leicester have invented a new technique in the manufacture of ceramics that has the potential to save the industry time and costs while reducing wastage.

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.