Combing a qubit: Optical frequency combs could tame quantum bits

April 5, 2010
The spectrum of pulse trains from a mode-locked laser consists of a sequence of optical frequencies that are evenly spaced. Pairs of frequencies formed from two 'teeth' on the comb have a definite phase relationship with one another and the pair can control a spin qubit on a trapped ion via a stimulated Raman process. Physicists have now extended this capability to any frequency by splitting the pulses and shifting each with an acousto-optic modulator. Credit: American Physical Society

Physicists at the University of Maryland have found a way to turn a precision measurement device into a versatile tool for manipulating quantum bits (qubits). The researchers adapted a device known as an optical frequency comb in their novel approach to performing the sorts of quantum data operations that will be vital for future quantum computers. The research appears in this week's issue of Physical Review Letters and is described in a Viewpoint article by Boris Blinov (University of Washington) in the current edition of APS Physics.

Conventional methods for manipulating qubits typically require pairs of lasers with closely coordinated outputs and high power levels. Optical frequency combs produce a rainbow of light that's made up of discrete, precisely defined frequencies. Because the light originates from a single source, rather than two separate sources, the output frequencies in an optical comb are automatically coherent. As a result, two frequencies from a single optical comb can take the place of a pair of lasers in manipulating a .

Despite the convenience the comb offers in coherence, tailoring the output for specific applications generally involves physically adjusting the components that produce a comb. The new research demonstrates a technique that solves the problem by effectively using the "teeth" (individual frequencies in a comb output) of one comb to produce coherent pairs of teeth in another comb.

This allows the researchers to electronically shift frequencies to the specific values they need, rather than being constrained by the fixed choices that a single comb provides. The flexibility of the technique should be applicable to many types of qubits. In addition, closely related techniques are proving useful for a host of other applications that involve the manipulation and control of atoms with light.

Explore further: Enhanced LIDAR improves range, vibration measures

More information: Entanglement of Atomic Qubits Using an Optical Frequency Comb, D. Hayes, D. N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, S. Olmschenk, W. Campbell, J. Mizrahi, C. Senko, and C. Monroe, Phys. Rev. Lett. 104, 140501 (2010) - Published April 05, 2010, Download PDF (free)

Related Stories

Enhanced LIDAR improves range, vibration measures

February 2, 2006

Scientists at the National Institute of Standards and Technology have demonstrated the use of an ultrafast laser "frequency comb" system for improved remote measurements of distance and vibration. The technology, described ...

Creating the astro-comb to locate Earth-like planets

May 7, 2009

Researchers at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. have created an "astro-comb" to help astronomers detect lighter planets, more like Earth, around distant stars. The Harvard group will present ...

Straightening messy correlations with a quantum comb

November 23, 2009

Quantum computing promises ultra-fast communication, computation and more powerful ways to encrypt sensitive information. But trying to use quantum states as carriers of information is an extremely delicate business. Now ...

Quantum leap for phonon lasers

February 22, 2010

Physicists have taken major step forward in the development of practical phonon lasers, which emit sound in much the same way that optical lasers emit light. The development should lead to new, high-resolution imaging devices ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.