Poultry disease vaccine brings short-term results but long-term problems

April 22, 2010

Attenuated live vaccines that protect poultry against Newcastle Disease may be altering the genetic makeup of the wild virus strains, which could make future outbreaks unpredictable and difficult to tackle, according to biologists.

Newcastle Disease is an economically devastating poultry disease that costs the industry millions of dollars.

"Many vaccines in the animal industry are developed by modifying a virulent live virus," said Mary Poss, professor of biology and veterinary and biomedical sciences, Penn State. "These vaccines elicit a strong protection against disease."

However, vaccinated birds can shed the vaccine virus to infect other birds, and live virus vaccines do not always protect birds from infection from other viral strains of Newcastle disease.

Poss and her Penn State colleagues Yee Ling Chong, graduate student in biology; Abinash Padhi, post-doctoral fellow and Peter J. Hudson, Willaman professor of biology, found that one vaccine strain recombined -- exchanged -- with at least three wild strains, creating new viruses. These viruses are found in both domestic and wild birds. The team's findings appear today (Apr. 22) in .

"Our findings indicate that birds can be simultaneously infected with the live and several other strains of this avian virus," said Poss. "This raises concerns that modified live virus vaccines, though effective, may combine with circulating viruses to create unpredictable new strains."

A modified live virus vaccine is essentially a weakened virus that does not cause disease but mimics a natural infection that in turn evokes a strong from the infected host. But Poss argues that vaccination may be unwittingly increasing the diversity of Newcastle Disease viruses that are circulating in wild birds.

For instance, many poultry farmers typically vaccinate the flock by mixing the vaccine in the birds' drinking water or by aerosol, which means wild birds and pigeons can also become infected with the vaccine virus.

This sets up the opportunity for viral recombination. A bird is infected with two different viruses at the same time, one from the weakened vaccine and one naturally, and both viruses then infect the same cell.

In addition to the possibility of creating new viruses, different strains of the virus that causes Newcastle disease may be evolving in different environments. Recombination among these strains could bring together genes that have multiple means to evade immunity in a host.

Poss added that vaccine developers need to be aware of the potential for driving virus evolution using modified live viruses and should instead consider using killed or inactivated viruses. Scientists are already using that approach against Newcastle Disease in some areas but not globally.

"We need to step up the surveillance and monitoring of viral diseases in poultry and wild birds," said Poss. "We need to be aware that management practices including the use of live virus vaccines can change viral diversity and the consequences of such changes will not be evident for several generations."

While many virus strains undergo a boom and bust cycle -- they are present for a period of time and then die out -- Poss notes that the use of live virus vaccines creates a persistent level of the vaccine strains in the global bird population.

Poultry farmers around the world vaccinate birds with vaccine made from one of two live strains of an avian virus that causes Newcastle Disease. While vaccines from the first strain are used mainly in Asia, the second strain is used in vaccines worldwide. Since the 1950s, vaccines derived from the two strains have helped poultry farmers avoid devastating economic losses.

To determine the impact of vaccination on the evolution of wild viruses, researchers analyzed the evolutionary history of 54 samples of full-length genome sequences of the avian paramyxovirus -- the virus that causes Newcastle Disease -- isolated from infected birds.

If all six genes that make up the paramyxovirus shared the same ancestor, Poss reasoned, the family trees of each gene would look the same. However, genes that are derived from a different strain would have family trees distinct from the other genes of that virus, a strong signature of recombination.

Statistical analysis of the gene sequences indicates that recombination occurred in at least five of the sampled genomes. Four of these five genomes contained gene sequences from one of the two vaccine strains.

Researchers next reconstructed the population history of the different viral strains. The strain from which the was derived showed a higher and more constant population size compared to other circulating strains.

"When viruses don't change, it is typically a good thing," Poss explained. "But as soon as they start to change, like the flu, we don't know what the transmission and disease potential are going to be like from one year to another. So driving up viral diversity is not a good thing."

Explore further: Tomato vaccines: New bird flu weapon?

Related Stories

Tomato vaccines: New bird flu weapon?

March 15, 2006

Australian scientist Amanda Walmsley says she is trying to grow a bird flu vaccine in tomatoes to be used to prevent the disease in chickens.

Study: Live H5N1 virus vaccines effective

September 12, 2006

U.S. scientists say live, weakened versions of differing strains of avian flu viruses have offered protection when tested in mice and ferrets.

New fowlpox vaccine available

October 26, 2007

A new vaccine developed by CSIRO Livestock Industries to help control the common poultry disease, fowlpox, has been registered for commercial use by one of Australia’s leading animal health companies, Intervet Australia ...

Bird flu vaccine protects people and pets

October 20, 2008

A single vaccine could be used to protect chickens, cats and humans against deadly flu pandemics, according to an article published in the November issue of the Journal of General Virology. The vaccine protects birds and ...

Study: Flu shot better than nasal spray in adults

September 23, 2009

(PhysOrg.com) -- A flu shot is 50 percent more effective than nasal spray vaccine in preventing seasonal influenza in healthy adults, a new University of Michigan study shows.

Recommended for you

Mapping the protein universe

October 9, 2015

To understand how life works, figure out the proteins first. DNA is the architect of life, but proteins are the workhorses. After proteins are built using DNA blueprints, they are constantly at work breaking down and building ...

ZomBee Watch helps scientists track honeybee killer

October 9, 2015

While scientists have documented cases of tiny flies infesting honeybees, causing the bees to lurch and stagger around like zombies before they die, researchers don't know the scope of the problem.

Gene editing: Research spurs debate over promise vs. ethics

October 9, 2015

The hottest tool in biology has scientists using words like revolutionary as they describe the long-term potential: wiping out certain mosquitoes that carry malaria, treating genetic diseases like sickle-cell, preventing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.