New computational method to uncover gene regulation

April 23, 2010

Scientists have developed a new computational model to uncover gene regulation, the key to how our body develops - and how it can go wrong.

The researchers, from The University of Manchester (UK), Aalto University (Finland) and the European Molecular Biology Laboratory Heidelberg (Germany), say the new method identifies targets of regulator .

The contains instructions for making all the cells in our body. An individual cell's make up (e.g. muscle or blood) depends on how these instructions are read. This is controlled by gene regulatory mechanisms. Uncovering these mechanisms holds a key to greatly improving our understanding of biological systems.

One important is based on genes that actively promote or repress the activity of other genes. The new research addresses the problem of identifying the targets these regulator genes affect.

The new method, presented in the latest edition of (PNAS), is based on careful modelling of time series measurements of . It combines a simple biochemical model of the cell with probabilistic modelling to deal with incomplete and uncertain measurements.

Dr Magnus Rattray, a senior researcher at Manchester's Faculty of Engineering and Physical Sciences, said: "Combining biochemical and probabilistic modelling techniques as done here holds great promise for the future. Many systems we are looking at now are too complex for purely physical models and connecting to experimental data in a principled manner is essential."

Dr Antti Honkela, his colleague at Aalto University School of Science and Technology, added: "A major contribution of our work is to show how data-driven machine learning techniques can be used to uncover physical models of cell regulation. This demonstrates how data-driven modelling can clearly benefit from the incorporation of physical modelling ideas."

Explore further: Learning the language of gene expression

Related Stories

Learning the language of gene expression

January 19, 2007

Researchers have taken a major step towards understanding the language of gene regulation in the fruitfly Drosophila and they expect the technique to be rapidly applicable to understanding the effects of genome variation ...

The construction of heart modelling leads path to new therapies

January 10, 2008

Heart disease is still a major killer, especially in the western world, but new therapies based on stem cells and other techniques could now be imminent. Progress is being held back however by the difficulty testing new therapies ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.