New insight into Parkinson's disease

Apr 19, 2010

New research provides crucial insight into the pathogenic mechanisms of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The study appears in the April 19 issue of the Journal of Cell Biology.

The identification of inherited mutations in genes such as Parkin and PINK1 ( PTEN-induced putative kinase 1 ) has revealed key factors in the development of familial forms of the disease. Parkin adds ubiquitin molecules to other proteins to trigger their degradation, while PINK1 regulates mitochondrial quality control. But how these two work together remains a mystery.

Now, Keiji Tanaka and colleagues show that PINK1 is rapidly and continuously degraded under steady-state conditions when mitochondria are healthy, and that a loss in mitochondrial membrane potential stabilizes PINK1's accumulation. Furthermore, PINK1 recruits Parkin from the cytoplasm to mitochondria with low membrane potential to initiate the disposal of damaged .

Interestingly, the ubiquitin ligase activity of Parkin is repressed in the cytoplasm under steady-state conditions; however, PINK1-dependent mitochondrial localization liberates the latent enzymatic activity of Parkin. Some pathogenic mutations of PINK1 and Parkin interfere with the aforementioned events, suggesting they play a role in causing the disease.

Explore further: Researchers discover new mechanism of DNA repair

More information: Matsuda, N., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200910140

Related Stories

When cells run out of fuel

Aug 24, 2009

Parkinson's disease is caused by the degeneration of neurons in the midbrain. The mechanisms leading to the loss of these neurons, however, are largely unknown. Recent research revealed that about ten per cent of cases are ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.