New understanding of gating mechanism of CFTR chloride channel

April 26, 2010

New research advances our understanding of the gating mechanism of the CFTR, the chloride channel mutated in cystic fibrosis patients. The study by Tzyh-Chang Hwang and colleagues (University of Missouri), and accompanying Commentary by László Csanády (Semmelweis University) appear in the May issue of the Journal of General Physiology.

CFTR is a member of the superfamily of ABC proteins found in all organisms, from bacteria to human. The 48 human ABC proteins mostly mediate transmembrane export of substrates at the expense of ATP hydrolysis. They are involved in a wide variety of physiological processes, ranging from insulin secretion to drug detoxification.

Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBD1 and NDB2), which form a dimer. It is generally accepted that CFTR's opening-closing cycles, each completed within one second, are driven by rapid ATP binding and hydrolysis events in NBD2. Now, using real-time recording, Hwang and colleagues tackle the fundamental question of whether the NBD dimer fully dissociates in each gating cycle, and they provide strong evidence that it does not. The authors propose a gating model for CFTR with a "partial" separation of the NBD dimer, with two distinct cycles.

Explore further: Technology reveals 'lock and key' proteins behind diseases

More information:
Tsai, M.-F., M. Li, and T.-C. Hwang. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010399
Csanády, L. 2010.J. Gen. Physiol. doi:10.1085/jgp.201010443

Related Stories

Experiments point to new treatments for PKD

April 2, 2008

A family of small molecules called CFTR inhibitors show promising effects in slowing the progression of polycystic kidney disease (PKD), the most common genetic disease of the kidneys, according to preliminary research reported ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.