Expanded blueprint: Genetic incorporation of two different noncanonic amino acids into one protein

April 15, 2010

(PhysOrg.com) -- The genetic code includes information for only 20 amino acids (AAs). If this repertoire could be expanded, it would, for example, be possible to program bacteria to produce tailored proteins with various characteristics of interest to science, technology, or medicine.

In fact, the natural protein-production mechanism can be reprogrammed, but until now it has only been possible to incorporate a single new type of AA into a . Wenshe Liu and his co-workers at Texas A&M University (USA) have now successfully included two different, noncanonic into the genetic material of , as they report in the journal Angewandte Chemie.

In order to synthesize a protein, a cell first copies a “blueprint” (mRNA) from the corresponding gene and “reads” it (translation). The for every AA consists of three “letters” (nucleotides). In addition, there is a start codon and three different codons that mean “stop”. “Transporters” (tRNA) that specifically recognize the codons are loaded with the required AA and bring it to the place where protein synthesis occurs (ribosomes). The “loaders” are special enzymes (aminoacyl tRNA synthetases).

Only 20 AAs are naturally coded; these are known as the canonical AAs. Other AAs are made accessible to organisms by modification of individual AAs in the finished protein at a later stage. However, some bacteria that require an unusual AA as part of an enzyme used in their metabolism of methane use one of their stop codons (amber) for another purpose, so it functions as a codon for the additional AA. This method has previously been successfully emulated in the laboratory. Liu and his teams have now for the first time used two such bacterial systems in parallel. One of the tRNAs was mutated to recognize a different stop codon (ochre). By mutation, they were able to reprogram the associated aminoacyl tRNA synthetases so that they load up their tRNAs with the desired synthetic AA.

The researchers incorporated this altered genetic material into bacterial cells. As desired, these cells then incorporated two noncanonical AAs into one protein. These two AAs are constructed so that each has a specific “snap” where desired functional groups can later simply be “clicked on” (click chemistry). For example, it is possible to attach special pairs of molecules that fluoresce when they can exchange energy with each other. To do this, they must be at a specific distance and angle relative to each other. Such pairs make it possible to draw conclusions about the conformation of a protein, as well as its dynamic changes during a reaction.

Explore further: Scientists decode RNA mystery, will help aim drug therapies

More information: Wenshe Liu, A Facile System for Genetic Incorporation of Two Different Noncanonical Amino Acids into One Protein in Escherichia coli, Angewandte Chemie International Edition 2010, 49, No. 18, 3211-3214, dx.doi.org/10.1002/anie.201000465

Related Stories

New compound effectively treats fungal infections

June 22, 2007

A new mechanism to attack hard-to-treat fungal infections has been revealed by scientists from the biotech company Anacor Pharmaceuticals Inc., California, and the European Molecular Biology Laboratory (EMBL) outstation in ...

Model suggests how life's code emerged from primordial soup

August 7, 2009

(PhysOrg.com) -- In 1953, Stanley Miller filled two flasks with chemicals assumed to be present on the primitive Earth, connected the flasks with rubber tubes and introduced some electrical sparks as a stand-in for lightning. ...

Recommended for you

Unusual use of blue pigment found in ancient mummy portraits

August 26, 2015

Mostly untouched for 100 years, 15 Roman-era Egyptian mummy portraits and panel paintings were literally dusted off by scientists and art conservators from Northwestern University and the Phoebe A. Hearst Museum of Anthropology ...

ORNL chemical sampling interface features simplicity, speed

August 26, 2015

In mere seconds, a system developed at the Department of Energy's Oak Ridge National Laboratory can identify and characterize a solid or liquid sample, providing a valuable tool with applications in material science, forensics, ...

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.