A more sensitive sensor using nano-sized carbon tubes

March 22, 2010

Electro-mechanical sensors tell the airbag in your car to inflate and rotate your iPhone screen to match your position on the couch. Now a research group of Tel Aviv University's Faculty of Engineering is making the technology even more useful.

Prof. Yael Hanein, Dr. Slava Krylov and their doctoral student Assaf Ya'akobovitz have set out to make sensors for (MEMS) significantly more sensitive and reliable than they are today. And they're shrinking their work to nano-size to do it.

More sensitive sensors means more thrilling videogames, better functioning prosthetic limbs, cars that can detect collisions and dangerous turns before they occur, and -- in the defense industry -- missiles that can reach a target far more precisely.

Miniscule earthquakes

Able to "feel" and sense the movement of individual atoms, the researchers' new MEMS sensing device uses small carbon tubes, nano in size -- about one-billionth of a meter long. Creating these tiny tubes using a process involving and a furnace, Prof. Hanein has developed a method whereby they arrange themselves on a surface of a to accurately sense tiny movements and changes in gravity.

In the device developed by Prof. Hanein's and Dr. Krylov's team, a very tiny nanometer scale tube is added onto much larger micrometer-scale MEMS devices. Small deformities in the crystal structure of the tubes register a change in the movement of the nano object, and deliver the amplitude of the movement through an electrical impulse. "It's such a tiny thing," Prof. Hanein says. "But at our resolution, we are able to feel the motion of objects as small as a few atoms."

"Originally developed mainly for the , miniature sensors are all around us," says Prof. Hanein. "We've been able to fabricate a new device where the nano structures are put onto a big surface -- and they can be arranged in a process that doesn't require human intervention, so they're easier to manufacture. We can drive these nano-sensing tubes to wherever we need them to go, which could be very convenient and cost-effective across a broad spectrum of industries."

Until now, Prof. Hanein explains, the field of creating sensors for nanotechnology has been primarily based on manual operation requiring time-consuming techniques. Prof. Hanein and her team have developed a sensitive but abundant and cost-effective material that can be coated onto prosthetic limbs, inserted into new video games for more exciting play, and used by the auto industry to detect a potential collision before it becomes fatal.

The technology has been presented in a number of peer-reviewed journals including the Journal of Micromechanics and Micro-engineering; at a MEMS conference in Hong Kong; and at a nano conference in Tirol, Austria in March.

Markets in motion

The market for MEMS devices, which take mechanical signals and convert them into electrical impulses, is estimated to be worth billions. "The main challenge facing the industry today is to make these basic sensors a lot more sensitive, to recognize minute changes in motion and position. Obviously there is a huge interest from the military, which recognizes the navigation potential of such technologies, but there are also humanitarian and recreational uses that can come out of such military developments," Prof. Hanein stresses. More sensitive MEMS could play a role in guided surgery, for example.

The TAU team is working on optimizing the system, hoping to make it at least 100 times more sensitive than any sensor device on the market today.

Explore further: Breakthrough Motion Detector 1,000 Times More Sensitive Than Any Known

Related Stories

UF engineer develops tiny, easily mass-produced motion sensor

February 9, 2006

A University of Florida engineer is the latest researcher to design a tiny, easy-to-manufacture motion sensor, a development that could help popularize the sensors as standard equipment in personal electronics, medical devices ...

Modern ceramics help advance technology

May 8, 2008

Many important electronic devices used by people today would be impossible without the use of ceramics. A new study published in the Journal of the American Ceramic Society illustrates the use of ceramic materials in the ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.