Seafarers' scourge provides hope for biofuel future

Mar 08, 2010
Here is a close-up of the gribble. Credit: Dr. Simon Cragg/Graham Malyon -- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, UK

For centuries, seafarers were plagued by wood-eating gribble that destroyed their ships, and these creatures continue to wreak damage on wooden piers and docks in coastal communities.

But new research by scientists at the BBSRC Sustainable Bioenergy Centre at the Universities of York and Portsmouth is uncovering how the tiny marine isopod digests the apparently indigestible.

By examining genes that are expressed in the guts of gribble, the researchers have demonstrated that its digestive system contains enzymes which could hold the key to converting wood and straw into liquid biofuels.

In research published today, a team headed by Professor Simon McQueen-Mason and Professor Neil Bruce at York, and Dr Simon Cragg at Portsmouth reveal that the gribble digestive tract is dominated by enzymes that attack the polymers that make up wood. One of the most abundant enzymes is a cellulose degrading never before seen in animals.

The research is published in the latest issue of the (PNAS).

This is a close-up of the gribble. Credit: Dr. Simon Cragg/Graham Malyon (Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, UK)

Unlike termites and other wood-eating animals, gribble have no helpful microbes in their digestive system. This means that they must possess all of the enzymes needed to convert wood into sugars themselves.

Professor McQueen-Mason, of the Centre for Novel Agricultural Products (CNAP) in the Department of Biology at York, said: "This may provide clues as to how this conversion could be performed in an industrial setting."

The scientists at York are now studying the enzymes to establish how they work, and whether they can be adapted to industrial applications. Perhaps one day soon seafarers will be sailing the seas on ships powered with biofuels produced with gribble enzymes.

Duncan Eggar, BBSRC Bioenergy Champion, said: "The world needs to quickly reduce its dependence on fossil fuels and sustainably produced bioenergy offers the potential to rapidly introduce liquid transport fuels into our current energy mix."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: The paper ‘Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes’ is published in Proceedings of the National Academy of Sciences.

Related Stories

Sweet success for sustainable biofuel research

Jan 25, 2010

Scientists have found a way to increase fermentable sugar stores in plants which could lead to plant biomass being easier to convert into eco-friendly sustainable biofuels. Their research is highlighted in the latest issue ...

Super-fermenting fungus genome sequenced

Mar 05, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Scientists create new enzymes for biofuel production

Mar 23, 2009

Researchers at the California Institute of Technology (Caltech) and world-leading gene-synthesis company DNA2.0 have taken an important step toward the development of a cost-efficient process to extract sugars ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.