Preventing or reversing inflammation after heart attack, stroke may require 2-pronged approach

March 1, 2010

Researchers at Albany Medical College are releasing results of a study this week that they say will help refocus the search for new drug targets aimed at preventing or reversing the devastating tissue inflammation that results after heart attack and stroke.

In the March 5 issue of the , lead author Alejandro P. Adam and his colleagues at the college's Center for Cardiovascular Science are reporting that vascular cells' ability to properly regulate fluid movement is not necessarily affected solely by the activity of an enzyme that for years has been in the crosshairs of scientists and pharmaceutical developers.

"Learning the mechanisms of inflammation is a key step in the development of new and better therapies to improve the outcome of widespread pathologies, such as stroke, heart attack, and ," said Adam, a postdoctoral fellow at the cardiovascular center. "To determine which are the best targets for treatment, we need to understand exactly what role each molecule is playing in the regulation of the vessel walls, and we found that the enzyme Src may be needed to get changes in barrier function but by itself is not sufficient."

Blood vessels, which form a tight barrier between blood and the surrounding tissues, are composed of endothelial cells that act as gatekeepers, controlling how, when and where molecules of water, solutes and pass through them into the body's tissues.

Previous studies have shown blocking the enzyme Src altered the structure of a protein known to hold the endothelial cells together, thus, keeping their barriers tight and limiting caused by fluid accumulation, or edema.

"We found that Src indeed adds several phosphates to this protein, but this addition of the did not alter barrier function of the endothelial cells," explained professor Peter A. Vincent, who oversaw the team's research. "These findings suggest other pathways are needed for Src to change permeability and open the door to future studies to determine what these other signals are."

There are many "adhesion molecules" involved in holding endothelial cells together and many signaling molecules that tell the adhesion molecules when to hold onto or release each other. Vincent's team is moving forward with what he calls a "two-hit model" - the idea that endothelial cells require two different signals to open up cell-cell connections and allow the passage of fluids.

"Many factors lead to a complex array of signals inside the endothelial cells to promote this loss of barrier function," Adam said. "A two-hit model would explain much better than a single-hit model the regulation of the vascular permeability. On the pharmacological side, it would allow us to propose other drug targets to prevent or reverse inflammation and edema."

By being named a "Paper of the Week" by the Journal of Biological Chemistry, the article by Adam and Vincent, graduate student Amy L. Sharenko and associate professor Kevin Pumiglia has been categorized in the top 1 percent of papers reviewed by the journal's editorial board in terms of significance and overall importance.

Explore further: Stem cells used to create critical brain barrier in lab

Related Stories

Building the blood-brain barrier

October 27, 2008

Construction of the brain's border fence is supervised by Wnt/b-catenin signaling, report Liebner et al. in The Journal of Cell Biology.

Bone marrow cells can heal nerves in diabetes model

February 4, 2009

Transplanting cells that replenish blood vessels can also restore nerve function in an animal model of diabetic neuropathy, Emory researchers have found. The results are described online this week in the journal Circulation.

Deciphering the body's healing secrets

February 12, 2009

Healthy blood vessels play a key role in the prevention and treatment of diseases such as cardiovascular disease and diabetes. Endothelial cells line the blood vessels and are critical to the regulation of blood vessel growth ...

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.