Newly identified proteins critical to FA pathway DNA repair function

March 25, 2010

Identification of two new proteins in the Fanconi anemia DNA repair pathway may help explain genetic instability in people with Fanconi anemia and how otherwise healthy people are susceptible to cancer from environmentally triggered DNA damage.

A study in the March 26 Molecular Cell adds another layer of complexity to the multifaceted Fanconi (FA) pathway. The research was led by scientists in the division of Experimental and Cancer Biology at Cincinnati Children's Hospital Medical Center.

Mounting scientific evidence suggests the FA repair pathway is necessary to limit genomic instability caused by abnormal structural changes during and cell division. In some people the pathway is genetically unstable, putting them at risk for the Fanconi anemia , physical defects and possibly cancer.

"Although only a small number of people have Fanconi anemia, this study helps us explain the very intricate steps that occur during DNA repair processes and how defects in DNA repair processes can lead to cancer in the general population," said Amom Ruhikanta Meetei, Ph.D., senior investigator on the study.

The researchers show how the two novel proteins - which they named MHF1 and MHF2 - work together to bind to specific DNA structures and are "indispensable for the functional integrity of the FA pathway." The proteins were identified working through a specific core component protein of the FA pathway called FANCM, one of eight currently known to make up the FA core complex.

FA cells are extremely sensitive to exposure from agents that can cause DNA interstrand crosslinks (ICLs), abnormal structures that block DNA replication. When disruptions from or inherent genetic instability create the possibility for ICLs, the study shows that MHF1 and MHF2 help FANCM prevent or repair these crosslinks, which if unresolved can lead to cell defects and disease

The researchers also report that loss of MHF1 alone disrupts normal function of the entire FA pathway. In fact, when the researchers suppressed MHF1, it destabilized FANCM and caused increased chromosome aberrations after exposure to capothecin, an agent that causes ICLs.

As they move forward with their research, the investigators next want to analyze cells from people who have Fanconi anemia to see if they detect mutations in MHF1 or MHF2 that could help explain in these patients, said Thiyam Ramsing Singh, Ph.D., first author on the study and a member of Dr. Meetei's laboratory.

The precise molecular functions of the FA pathway and how they influence the development of cancers are still being uncovered. The identification of FANCM as part of the FA core complex and its DNA repair function was an important step forward, and was first reported in 2005 by Dr. Meetei and his research colleagues.

Explore further: 2 heads are better than 1: 2 dysfunctional DNA repair pathways kill tumor cells

Related Stories

Two proteins act as molecular tailors in DNA repair

November 13, 2009

(PhysOrg.com) -- On average, our cells encounter a very lethal form of DNA damage 10 times a day. Lucky for us, we have the capacity to repair each and every one of them. New research now reveals exactly how two well-known ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.