Computer model predicts how materials meet in the middle

March 16, 2010 By Colin Smith and Lucy Goodchild
Computer model predicts how materials meet in the middle

( -- Predicting the way different materials fuse together at an atomic level in objects including iPods, computer chips and even ships may be possible using a new computer model, described in the March issue of Nature Materials.

The authors of the study, from Imperial College London, say their new approach could help engineers understand and work out in advance how materials might behave. This could help them to design better materials with improved properties such as strength, flexibility or .

When two different crystalline materials, such as metals or ceramics, are joined together, there is an interface between them where individual atoms have to arrange themselves into certain positions. The chemical composition of this interfacial region may also be different from that of either crystal. The structure and composition of the interface can have a significant impact on the overall properties of the material.

In this video, the researchers behind the new model, Professor Adrian Sutton, from the Department of Physics, and Professor Mike Finnis, from the Departments of Materials and Physics, talk about interfaces, the computational approach they have developed and why this is a major breakthrough in materials research.

Explore further: Model simulates atomic processes in nanomaterials

More information: “A genetic algorithm for predicting the structures of interfaces in multicomponent systems” Nature Materials, corrected online 4 March 2010. Corresponding author: Professor Adrian Sutton, Imperial College London. A link to the paper is available here.

Related Stories

Model simulates atomic processes in nanomaterials

March 1, 2007

Researchers from MIT, Georgia Institute of Technology and Ohio State University have developed a new computer modeling approach to study how materials behave under stress at the atomic level, offering insights that could ...

Recommended for you

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.