Genetic variant offers protection against TB and leprosy

March 4, 2010

A study into why some people are more resistant than others to diseases such as tuberculosis (TB) and leprosy has identified a new genetic variant which affects susceptibility to these diseases. The findings, published today in the journal Cell, may have implications for future treatments for the two conditions.

TB and , whilst seemingly very different diseases, are both caused by rod-shaped, aerobic bacteria known as mycobacteria; TB is caused by M. tuberculosis; leprosy by M. leprae. Exposure to the bacteria causes very varied outcomes amongst patients: for example, in the case of M. , some people will resist infection, others will carry the bacteria asymptomatically, and yet others may develop life-threatening symptoms.

Our uses two broad strategies to defend us from infection: innate immunity and adaptive immunity. Innate immunity is the immune response that we are born with; it is the first line of defence, swift, but more generalised than adaptive immunity. The latter strategy enables the immune system to adapt its response to infection in order to better target itself towards specific invading pathogens.

To investigate how cause disease - and what protects some people but not others - researchers at the University of Washington in Seattle, together with researchers from the Wellcome Trust's South East Asia programme in Vietnam, studied zebrafish. As with mammals, the zebrafish relies on adaptive immunity - the immune response which 'learns' from invading - for maximal control of mycobacterial infection. The zebrafish's transparent allow researchers to see how its innate immune response behaves before the adaptive immunity has chance to learn to recognise a pathogen.

The researchers infected the genetically-screened zebrafish with their own natural mycobacterial pathogen, M. marinum. By examining the effect that this had on the larvae, the researchers were able to see the early steps of mycobacterial infection and identify which was the key locus that increased susceptibility. They found this to be the lta4h locus, which has a human equivalent, LTA4H. The locus is responsible for regulating production of key chemicals involved in the inflammatory response to infection.

The researchers then turned their attention to case-control studies - comparisons of patients ('cases') against healthy volunteers ('controls') - to see whether genetic variants in the LTA4H region affected susceptibility to mycobacterial infection in humans, examining patients in Vietnam with a particularly dangerous form of TB known as meningeal TB, and patients in Nepal with leprosy.

"We found that carrying a particular genetic variant of LTA4H seems to offer protection against TB in the Vietnamese patients and leprosy in the Nepalese patients," says Dr Sarah Dunstan from the Oxford University Clinical Research in Ho Chi Minh City, part of the Wellcome Trust's South East Asia programme in Vietnam. "This is an interesting finding and opens up a potential new target for drugs against these diseases."

Effective treatment for TB has been available for over 50 years, however patients face 6 month long treatment schedules with numerous, potentially toxic drugs. Combating the global burden of TB will rely on new and improved drugs and findings such as these reveal new opportunities for drug development.

Explore further: Preventing tuberculosis reactivation

More information: Tobin DM, et al. The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans. Cell; 4 March 2010

Related Stories

Preventing tuberculosis reactivation

October 18, 2007

Tuberculosis (TB) is the leading cause of death due to infectious disease in the world today. It is estimated that 2 billion people are currently infected, and although most people have latent infection, reactivation can ...

Tuberculosis not the only risk from new immunological drugs

May 20, 2008

A new survey cautions physicians that drugs commonly prescribed for patients suffering from immunological disorders such as rheumatoid arthritis and inflammatory bowel disease may carry risks of serious infections other than ...

Scientists discover bacteria that can cause bone infections

October 17, 2008

Scientists have discovered that a bone infection is caused by a newly described species of bacteria that is related to the tuberculosis pathogen. The discovery may help improve the diagnosis and treatment of similar infections, ...

Tuberculosis -- hiding in plain sight

May 22, 2009

Current research suggests that Mycobacterium tuberculosis can evade the immune response. The related report by Rahman et al, "Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.