Gone With the Galactic Wind: 10 Years of Chandra X-ray Observations Reveal Galaxy Secrets

March 8, 2010
Gone With the Galactic Wind: 10 Years of Chandra X-ray Observations Reveal Galaxy Secrets
Chandra X-ray telescope image

(PhysOrg.com) -- When NASA launched its Chandra X-ray observing telescope into orbit in 1999, astronomers didn’t know much about the galactic winds made of wispy, multi-million-degree gas clouds that stream out from normal galaxies like our own, because they are “diffuse, gentle and unspectacular” compared to far more dramatic emanations of starbursts, recalls astronomer Q. Daniel Wang of the University of Massachusetts Amherst.

But direct observation by the orbiting telescope have changed all that and led to “the first characterization of the spatial, thermal, chemical and kinetic properties of the gas in our galaxy,” Wang states. Chandra data show, among other things, that though seemingly as ephemeral as fog, the outflowing hot gas from normal galaxies exerts a very powerful feedback force on the surroundings, preventing or slowing the infall of intergalactic gas due to gravity. “This discovery is a new key to our understanding of how galaxies work, especially how they lose mass and energy, that was not possible before Chandra,” he adds.

The astronomer catalogs the new knowledge in an article published this week in the early online edition of . Because his group has made extensive use of Chandra data, he was asked to write a review celebrating the instrument’s 10-year anniversary.

As Wang explains, galaxies like our own are made of visible stars and gas but investigating this matter and its properties using only visible light reveals only a small fraction of material actually present. “The hot gas is very hard to detect because of its low density, hence weak radiation, compared to and that accrete from their companions, which tend to overwhelm X-ray emissions from a galaxy,” he adds.

“By X-raying galaxies, we can see the invisible, and with the Chandra instrument we can detect gas that emits or absorbs X-rays, as well as such exotic objects as black holes and neutron stars that tend to emit primarily in X-rays.” X-ray tomography by the high-spectral resolution Chandra instrument has given astronomers the unprecedented opportunity to examine the amount, distribution and composition of the hot gas against bright background sources.

It has also helped to yield clues to the mystery of why there is not enough hot gas present inside or in the immediate vicinity of galaxies as predicted by current theory, in particular elements synthesized and ejected by stars. In fact, says Wang, “we find that the bulk of energy expected from the supernovae is missing as well. We conclude that this missing energy is gone with the wind, a galactic wind that blows matter to much larger regions around galaxies than previously understood.”

“Indeed, we find direct evidence for such winds and outflows in nearby galaxies. This uses another well-known capability of the Chandra, the exquisite spatial resolution, which allows us to detect discrete X-ray sources and to remove them cleanly when mapping X-ray emission in and around galaxies. The outflows are called galactic feedback, which can have profound impact on the ecosystem of the galaxies.”

“These results, compared with detailed simulations, now enable us to study how the feedback regulates the formation and evolution of galaxies,” Wang says.

Explore further: Chandra catches early phase of cosmic assembly

Related Stories

Chandra catches early phase of cosmic assembly

August 15, 2004

A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from ...

NGC 5746: Detection of hot halo gets theory out of hot water

February 3, 2006

Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from ...

Chandra finds evidence for quasar ignition

March 23, 2006

New data from NASA's Chandra X-ray Observatory may provide clues to how quasars "turn on." Since the discovery of quasars over 40 years ago, astronomers have been trying to understand the conditions surrounding the birth ...

Chandra Sheds Light on Galaxy Collision

March 29, 2007

Astronomers think that there are enormous black holes at the centers of most, if not all, galaxies. These black holes, which can be millions or even billions of times more massive than the Sun, can greatly affect the galaxy ...

Galaxies coming of age in cosmic blobs

June 24, 2009

The "coming of age" of galaxies and black holes has been pinpointed, thanks to new data from NASA's Chandra X-ray Observatory and other telescopes. This discovery helps resolve the true nature of gigantic blobs of gas observed ...

Galaxy Collision Switches on Black Hole

December 10, 2009

(PhysOrg.com) -- This composite image of data from three different telescopes shows an ongoing collision between two galaxies, NGC 6872 and IC 4970.

Recommended for you

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.