Exploring Echinacea's enigmatic origins

March 5, 2010

An Agricultural Research Service (ARS) scientist is helping to sort through the jumbled genetics of Echinacea, the coneflower known for its blossoms--and its potential for treating infections, inflammation, and other human ailments.

Only a few Echinacea species are currently cultivated as botanical remedies, and plant breeders would like to know whether other types also possess commercially useful traits. ARS horticulturist Mark Widrlechner, who works at the ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa, is partnering in research to find out how many distinct Echinacea species exist. Previous studies have put the number between four and nine species, depending on classification criteria.

Working with Iowa State University scientists, Widrlechner selected 40 diverse Echinacea populations for DNA analysis from the many populations conserved at the NCRPIS. Most of these Echinacea populations were found to have a remarkable range of .

suggested that when much of North America was covered with glaciers, Echinacea found southern refuges on both sides of the . But when the glaciers receded after thousands of years, the groups came together as they moved northward and began to hybridize, which might have blurred previous genetic distinctions.

The research team also analyzed the same populations for chemical differences in root metabolites. These metabolites, which are often essential for survival and propagation, can vary widely among species and may have benefits for human-health.

Using this approach, researchers were able to identify clear distinctions among all 40 populations. These distinctions were organized into three composite profiles that accounted for almost 95 percent of the metabolite variation among the populations.

Additional analysis of metabolite variation indicated that the populations grouped together in ways that aligned well with earlier Echinacea species assignments that were based on plant morphology. This work suggested that there were nine distinct species, not just four.

Results from this work were published in Planta Medica.

Explore further: DNA studies show 1 critically endangered grouper species is really 2

More information: Read more about this research in the March 2010 issue of Agricultural Research magazine, available online at: www.ars.usda.gov/is/AR/archive/mar10/echinacea0310.htm

Related Stories

Although our genetics differ significantly, we all look alike

January 26, 2009

The genetic variation within a species can be significant, but very little of that variation results in clear differences in morphology or other phenotypes. Much of the diversity remains hidden ‘under the surface’ in ...

Scientists Find Evidence of Casuarina Hybrids

September 14, 2009

(PhysOrg.com) -- Hybrids of the invasive Australian plant species Casuarina exist in Florida, Agricultural Research Service (ARS) scientists and university cooperators have found.

Scientists Cryopreserve Pest-Imperiled Ash Trees

October 28, 2009

(PhysOrg.com) -- Using cryopreservation methods, Agricultural Research Service (ARS) scientists have devised a procedure for storing frozen budwood from ash trees (Fraxinus) and thawing the delicate buds for later use in ...

New Switchgrass Germplasm Collected in Florida

November 26, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists and cooperators have collected 46 new populations of switchgrass in Florida, adding valuable new accessions to the germplasm collection of this potential bioenergy ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.