Freezing point of supercooled water varies with electric charge

February 8, 2010 by Lin Edwards report
'Feather' ice. Image: Craig Thom, via Wikipedia

( -- Just as water can be superheated and remain liquid above the boiling point if there is no nucleating surface (such as a surface defect or a speck of dust), it can also become supercooled and remain liquid well below its freezing point of 0°C. Now scientists have found that supercooled water freezes at different temperatures in the presence of a surface with a positive or negative charge.

In the absence of a charged surface supercooled water can freeze at temperatures as low as -40°C, and it has been known for over 150 years that the presence of an can affect the freezing point (a phenomenon known as electrofreezing). The dominant hypothesis for the effect is that because are polar, with a small negative charge at one end and a positive charge at the other, an electric field would align them according to their charge. It has been difficult to study this phenomenon because charged surfaces (such as metals) act as nucleating agents, and therefore trigger freezing.

Igor Lubomirsky and colleagues from the Weizmann Institute of Science in Rehovot, Israel, have solved the dilemma by creating a charge on a non-nucleating pyroelectric material surface, to allow the electrical effects alone to be examined.

The scientists used lithium tantalate (LiTaO3) and thin films of strontium titanate (SrTiO3) as the non-nucleating surfaces, and placed them in a humid room. They then cooled the room until formed on the surfaces and then lowered the temperature even further until the droplets froze.

The results showed that in the absence of an electric field the water droplets froze at an average of -12.5°C. If the surface was negatively charged the freezing point was -18°C, while if the surface was positively charged the droplets froze at -7°C. Lubomirsky said the difference in freezing temperatures was surprising. The exact mechanism is unclear, and the team are investigating.

They also found they could freeze liquid supercooled water by heating it. With the surface of an LiTaO3 crystal negatively charged, the water was kept liquid at -11ºC for around 10 minutes, but after the charge dissipated the temperature was increased to induce a positive charge on the surface, and the water froze at -8 ºC. Powder x-ray diffraction studies showed that freezing on the positive surface began at the solid/water interface, while on the negative surface freezing began at the air/ interface.

The experiments demonstrated that if the surface charge is controlled ice formation can be either enhanced or suppressed, and this could possibly have an application in the cryogenic freezing of tissues and blood, or in cloud seeding.

The study was published on February 5 in the journal Science.

Explore further: Water running uphill a cooling idea

More information: David Ehre, Etay Lavert, Meir Lahav and Igor Lubomirsky, Science, 2010, DOI:10.1126/science.1178085

Related Stories

Model Suggests Origins of Mars Gullies

February 9, 2009

University of Arkansas researchers have used chemistry and geology to create a model that may explain the mystery of how modern-day gullies form on the surface of Mars.

'Cold' Mars Could Have Harbored Liquid Water

June 1, 2009

( -- A new NASA study provides further evidence that Martian minerals dissolved in water could have kept that water from freezing, even on a cold, early Mars.

Scientists Observe Liquid Water Below Freezing

June 24, 2009

( -- Below 0 °C, water turns to ice. But beyond that, or below about -75 °C, the ice may turn back into liquid water. While scientists have previously predicted this phase transition with computer simulations, ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 08, 2010
Awesome observation! I never would have thought of it. seems like something we would have noticed long ago. Water really is some strange stuff. Its bonds form a kind of mutable structure even in the liquid state. Almost like a liquid crystal.

and check out this curiosity. The test seems a bit small, but with a p value of .001, the results were highly statistically significant
http://www.intern..._EXPLORE (2).pdf
not rated yet Feb 09, 2010
non-nucleating surfaces and negative charges could find use as ice prevention on airplane wings

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.