Scientists unlock key enzyme using newly created 'cool' method

February 26, 2010

A team of Michigan State University scientists -- using a new cooling method they created -- have uncovered the inner workings of a key iron-containing enzyme, a discovery that could help researchers develop new medicines or understand how enzymes repair DNA.

Taurine/alpha-ketoglutarate dioxygenase, known as TauD, is a that is important in metabolism. Enzymes in this family repair DNA, sense oxygen and help produce antibiotics.

Specifically, the MSU team was interested in how iron and reacted together in the enzyme. Understanding how TauD works, which serves as a model for many other proteins, has implications in the scientific and medical fields, said Robert Hausinger, MSU professor of microbiology and .

"This is a broad enzyme family with similar mechanisms," he said. "Understanding how TauD works sheds light on how many other enzymes function from bacteria to humans. This can be applicable to a wide variety of essential enzymes of medical and agricultural interest."

For example, Hausinger said, understanding how the works can help scientists design inhibitors to prevent it from doing its job, which is a key step in preventing diseases. Also, understanding how the iron inserts oxygen atoms into other molecules provides insight into how enzymes metabolize the majority of medical drugs or in the human body.

As understanding how enzymes work can be very complicated — such reactions often are complex, fast and require multiple steps — the MSU team developed a new method to follow the TauD reaction. The difficult part for researchers was to slow down the reaction enough that the individual steps can be observed; one way to slow down an enzymatic reaction is to cool it.

The team used a stream of cold to slow down the reaction at -36 C (-33 F). To prevent freezing and to keep the reaction going, the scientists used - the same antifreeze that goes in vehicles.

Once the reaction started, the team used lasers - in an advanced method called Raman spectroscopy - to follow the vibrations of iron and oxygen atoms in TauD to determine how the reaction progressed. They found never seen before steps in the TauD reaction, overturning conventional thought.

The research was recently published in the Proceedings of National Academy of Sciences Early Edition.

Explore further: Cell respiration process is identified

Related Stories

Cell respiration process is identified

April 6, 2006

University of Helsinki scientists have identified an internal electron transfer reaction that starts the proton pump mechanism of the respiratory enzyme.

Bacteria beat the heat

August 30, 2006

How do some microorganisms manage to exist and even thrive in surroundings ranging from Antarctica to boiling hot springs? A team of scientists from the Weizmann Institute's Plant Sciences Department, led by Prof. Avigdor ...

Unlocking the function of enzymes

November 6, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.