A study reveals how respiratory tubes and capillaries form

February 9, 2010
A tube-cell image. In red, the tube; in blue, the cell nuclei; in green, cell shape. (electron microscopy). Credit: Copyright IRB Barcelona. J. Casanova

Scientists at the Institute for Research in Biomedicine (IRB Barcelona) and CSIC report on the formation of the small-diameter respiratory tubes of the fly Drosophila, a process that resembles the development of the finest blood vessels, the capillaries, in mammals. These tubes or capillaries, formed by a single cell, connect the main tubes of the respiratory system with organs and tissues, thereby providing oxygen. The study has been published in the journal Current Biology.

Jordi Casanova, professor at CSIC who heads a developmental biology group at IRB Barcelona, Spain, addresses the that leads to the formation of different parts of an organism. Revealing how respiratory tubes develop in Drosophila is relevant because the genes and mechanisms involved are very similar to those present in the mammalian respiratory and circulatory systems. "Our study explains the formation of the smallest tubes that develop to transport nutrients and oxygen to tissues", says Casanova.

Capillary formation is tightly linked to the development of tumours since these have the capacity to generate new capillaries to obtain more nutrients, in a process known as . Indeed, one of the strategies under study to prevent tumour growth is to inhibit the formation of these supply routes.

Studying cell-to-tube transformation in vivo

The tubes measure only a few microns in diameter and are formed inside a cell. The lengthening of a cell and the development of a tube occur simultaneously. "If a tissue or organ requires oxygen, it sends a signal to cells in the main tube. At that point, a single cell begins to lengthen towards its target, while the tube is developing inside. It is like putting a finger into a wrinkled glove: the material stretches as the finger slides in".

In order to follow the process in vivo, the researchers have filmed the development of under a microscope. "Real time observation of embryo development has allowed us to see what happens in the entire organism and to understand the interaction with neighbouring tissue. After, using molecular biology techniques, we have identified the components that participate", explains the first author of the study, Louis Gervais, postdoctoral fellow in Casanova's group.

The signal that the tissue cells emit is called Fibroblast Growth Factor (FGF) and the cell of the tube reacts by activating the Serum Response Factor (SRF), which is the same gene that is active in the capillaries of the circulatory system in mammals. "We have discovered how this genetic machinery acts inside the cell to ensure its reorganisation and cell-to-tube transformation." The researchers have identified the two main players: actin, a protein linked to cell movement, which is concentrated in the tip of the cell where it will begin to extend, and microtubules, very fine fibres that anchor on one side to actin and on the other to the opposite side of the cell.

The microtubule network is like rails along which the components to be incorporated travel both to the outer membrane of the cell and the inner membrane of the tube so that both grow, while actin acts as an explorer, indicating the direction of growth. Thus, the actin and microtubule conjunction organises the lengthening of the cell and tube growth towards the target tissue.

Explore further: Ovarian Cancer May Mimic Fallopian Tube Formation

More information: "In vivo coupling of cell elongation and lumen formation in a single cell" Louis Gervais and Jordi Casanova. Current Biology 2010, DOI 10.1016/j.cub.2009.12.043

Related Stories

Ovarian Cancer May Mimic Fallopian Tube Formation

March 6, 2007

A new study suggests that ovarian cancer cells form by hijacking a developmental genetic process normally used to form fallopian tubes. Scientists at the Georgia Institute of Technology and the Ovarian Cancer Institute discovered ...

A new system for collaboration in cell communication

June 26, 2007

Investigators from the Institute of Research in Biomedicine (IRB Barcelona) have identified a new signalling mechanism among cells in the fruit fly, Drosophila melanogaster. The researchers found that two independent groups ...

Discovery of a mechanism that regulates cell movement

July 20, 2008

A study performed by researchers at the Institute for Research in Biomedicine (IRB Barcelona), in collaboration with researchers at the Instituto de Biología Molecular of the CSIC, reveal a mechanism that controls the movement ...

Protecting cells from their neighbors

August 3, 2009

Almost all organisms evolve from a single cell, a fertilised egg. In the first hours after fertilisation, the fate of its future development is determined. It is dictated by the separation of cells that will become sperm ...

Recommended for you

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

Sex among eukaryotes is far more common than once believed

July 28, 2015

(Phys.org)—For a long time, biologists have considered sex to be an inherent trait of multicellular life, while microbial eukaryotes were considered to be either optionally sexual or purely clonal. From this perspective, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.