New on-off 'switch' triggers and reverses paralysis in animals with a beam of light

February 3, 2010
This tiny worm became temporarily paralyzed when scientists fed it a light-sensitive material, or "photoswitch," and then exposed it to ultraviolet light. Credit: American Chemical Society

In an advance with overtones of Star Trek phasers and other sci-fi ray guns, scientists in Canada are reporting development of an internal on-off "switch" that paralyzes animals when exposed to a beam of ultraviolet light. The animals stay paralyzed even when the light is turned off. When exposed to ordinary light, the animals become unparalyzed and wake up.

Their study appears in the . It reports the first demonstration of such a light-activated switch in animals.

Neil Branda and colleagues point out that such "photoswitches" -- light-sensitive materials that undergo photoreactions — have been available for years. Scientists use them in research. Doctors use light-sensitive materials and photoreactions in medicine in photodynamic therapy to treat certain forms of cancer. Those light-sensitive materials, however, do not have the reversibility that exists in photoswitching.

The video will load shortly

The JACS report describes development and successful testing of a photoswitch composed of the light-sensitive material, dithienylethene. The scientists grew transparent, pinhead-sized (C. elegans) and fed them a dithienylethene. When exposed to , the worms turned blue and became paralyzed. When exposed to visible light, the dithienylethene became colorless again and the worms' ended. Many of the worms lived through the paralyze-unparalyze cycle. Scientists were not sure how the switch causes paralysis.

The study demonstrates that photoswitches may have great potential in turning photodynamic therapy on and off, and for other applications in medicine and research, they indicate.

Explore further: Algal protein in worm neurons allows remote control of behavior by light

More information: "A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism", Journal of the American Chemical Society.

Related Stories

Glow worms glimmer on cue

August 18, 2008

(PhysOrg.com) -- University of Queensland researcher and lecturer Dr David Merritt has discovered Tasmanian cave glow-worms are energy conservationists: they switch their lights off at night-time.

Toward a nanomedicine for brain cancer

September 9, 2009

In an advance toward better treatments for the most serious form of brain cancer, scientists in Illinois are reporting development of the first nanoparticles that seek out and destroy brain cancer cells without damaging nearby ...

Recommended for you

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Calcium channel blockers caught in the act at atomic level

August 24, 2016

An atomic level analysis has revealed how two classes of calcium channel blockers, widely prescribed for heart disease patients, produce separate therapeutic effects through their actions at different sites on the calcium ...

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

Selecting the right house plant could improve indoor air

August 24, 2016

Indoor air pollution is an important environmental threat to human health, leading to symptoms of "sick building syndrome." But researchers report that surrounding oneself with certain house plants could combat the potentially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.