Ocean geoengineering scheme no easy fix for global warming

February 18, 2010
This map displays simulated additional surface warming (in Celsius) for the year 2100 caused by the temporary use of artificial upwelling in the green areas for the time period 2011-2060. Credit: IFM-GEOMAR

Pumping nutrient-rich water up from the deep ocean to boost algal growth in sunlit surface waters and draw carbon dioxide down from the atmosphere has been touted as a way of ameliorating global warming. However, a new study led by Professor Andreas Oschlies of the Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany, pours cold water on the idea.

" show that climatic benefits of the proposed geo-engineering scheme would be modest, with the potential to exacerbate should it fail," said study co-author Dr Andrew Yool of the National Oceanography Centre, Southampton (NOCS).

If international governmental policies fail to reduce emissions of carbon dioxide to levels needed to keep the impacts of human-induced within acceptable limits it may necessary to move to 'Plan B'. This could involve the implementation of one or more large-scale geo-engineering schemes proposed for reducing the carbon dioxide increase in the atmosphere.

One possible approach is to engineer the oceans to facilitate the long-term sequestration of carbon dioxide from the atmosphere. It has been suggested that this could be done by pumping of nutrient-rich water from a depth of several hundred metres to fertilize the growth of phytoplankton, the tiny that dominate biological production in surface waters.

The aim would be to mimic the effects of natural ocean upwelling and increase drawdown of atmospheric carbon dioxide by phytoplankton through the process of photosynthesis. Some of the sequestered carbon would be exported to the when phytoplankton die and sink, effectively removing it from the system for hundreds or thousands of years.

A previous study, of which Yool was lead author, used an ocean general circulation model to conclude that literally hundreds of millions of pipes would be required to make a significant impact on global warming. But even if the technical and logistical difficulties of deploying the vast numbers of pipes could be overcome, exactly how much carbon dioxide could in principle be sequestered, and at what risk?

In the new study, the researchers address such questions using a more integrated model of the whole Earth system. The simulations show that, under most optimistic assumptions, three gigatons of carbon dioxide per year could be captured. This is under a tenth of the annual anthropogenic carbon dioxide emissions, which currently stand at 36 gigatons per year. A gigaton is a million million kilograms.

One surprising feature of the simulations was that the main effect occurred on land rather than the ocean. Cold water pumped to the surface cooled the atmosphere and the land surface, slowing the decomposition of organic material in soil, and ultimately resulting in about 80 per cent of the carbon dioxide sequestered being stored on land. "This remote and distributed carbon sequestration would make monitoring and verification particularly challenging," write the researchers.

More significantly, when the simulated pumps were turned off, the atmospheric levels and surface temperatures rose rapidly to levels even higher than in the control simulation without artificial pumps. This finding suggests that there would be extra environmental costs to the scheme should it ever need to be turned off for unanticipated reasons.

"All models make assumptions and there remain many uncertainties, but based on our findings it is hard to see the use of artificial pumps to boost surface production as being a viable way of tackling global warming," said Yool.

Explore further: Fossil Fuels May Decrease Earth's Natural Capacity to Store Carbon

More information: Oschlies, A., Pahlow, M., Yool, A. & Matear, R. J. Climate engineering by artificial ocean upwelling - channelling the sorcerer's apprentice. Geophys. Res. Lett. 37, L04701 (2010). DOI:10.1029/2009GL041961

Related Stories

Oceans could slurp up carbon dioxide to fight global warming

November 19, 2007

Researchers in Massachusetts and Pennsylvania are proposing a new method for reducing global warming that involves building a series of water treatment plants that enhance the ability of the ocean to absorb carbon dioxide ...

Oceans losing ability to absorb greenhouse gas

January 11, 2010

(PhysOrg.com) -- Like a dirty filter, the Earth's oceans are growing less efficient at absorbing vast amounts of carbon dioxide, the major greenhouse gas produced by fossil-fuel burning, reports a study co-authored by Francois ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

History shows more big wildfires likely as climate warms

October 5, 2015

The history of wildfires over the past 2,000 years in a northern Colorado mountain range indicates that large fires will continue to increase as a result of a warming climate, according to new study led by a University of ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Feb 18, 2010
Uh, tell me again how modifying an entire marine ecology in a non-reversible way with unintended side effects is somehow "good?"
1 / 5 (2) Feb 18, 2010
If your religion is AGW anything is acceptable including destroying the earth to save it from AGW.
1 / 5 (2) Feb 21, 2010
Why do these people presume that their simulation are always correct? Anything doing with computers should be assumed to be wrong until proven true.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.