A New Way Forward for Nanocomposite Nanostructures

February 24, 2010
The heated probe of an atomic force microscope melts a nanoparticle-polymer composite enabling it to flow onto a surface. The nanocomposite can be used as-is or the nanoparticles released with an oxygen plasma. (Image courtesy of UIUC and NRL.)

(PhysOrg.com) -- Scientists at the Naval Research Laboratory and the University of Illinois-Urbana Champaign recently reported a new technique for directly writing composites of nanoparticles and polymers.

Recent years have seen significant advances in the properties achieved by both these materials, and so researchers have begun to blend these materials into nanocomposites that access the properties of both materials. Forming these nanocomposites into structures has been tricky since each nanocomposite would require a particular set of solvents or a particular surface coating. To solve this problem, the NRL and UIUC team developed a generic means for depositing many nanocomposites on multiple surfaces with nanoscale precision. Metal that were conducting, tiny , and nanoparticles that glowed, were all deposited using this one technique.

The technique builds on previous work using (AFM) probes as pens to produce nanometer-scale patterns. The polymer-nanocomposite blend is coated onto the probe. When the probe is heated, it acts like a miniature soldering iron to deposit the nanocomposite. "This technique greatly simplifies nanocomposite deposition," said Paul E. Sheehan, head of the Surface Nanoscience and Sensor Technology Section at NRL in Washington, D.C. "No longer do you have to spend half a year tweaking the chemistry of the surface or nanocomposite to achieve deposition."

The technique also solves a common problem when depositing soft materials like polymers and nanocomposites. The solvents and patterning procedures for depositing soft materials can damage any soft material already deposited. Consequently, it can be quite difficult to deposit many different such materials. "Our ability to control nanometer-scale heat sources allows local thermal processing of these nanocomposites," says William King, Kritzer Faculty Scholar in the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. This opens a door to the direct writing of highly complex structures.

Although the nanoparticles were typically dispersed throughout the nanocomposite, the researchers found that by adjusting the nanoparticle chemistry they could force the nanoparticles into alignment. "With the right chemistry, the forces in the polymer will guide the nanoparticles into thin rows." Rows of nanoparticles less than 10 nm wide were written, narrower than any other direct write technique. The string of magnetic nanoparticles should be useful for studying magnetic interactions on the smallest scales. "Combining with our nanolithographic technique these tiny magnetic nanostructures can be added to current electronic or MEMS devices to enhance their capabilities." says Woo Kyung Lee. "These capabilities and those of the other may find novel applications from microelectronics to biomedical devices."

The technique was published on January 13th, 2010, in the journal Nano Letters. The research was sponsored by the Defense Advanced Research Projects Agency (DARPA).

Explore further: First Ultraviolet Light Silicon-Based Photodetector Invented by UIUC

Related Stories

Improved Method for Nanometer-Scale Patterns Writing

August 30, 2004

Researchers from the Georgia Institute of Technology and the Naval Research Laboratory (NRL) have developed an improved method for directly writing nanometer-scale patterns onto a variety of surfaces. The new writing method, ...

Making Better Magnetic Nanoparticles

December 18, 2006

Using a polymer coating designed to resemble the outer surface of a cell membrane, a team of investigators led by Steve Armes, Ph.D., of the University of Sheffield in the United Kingdom, has created a highly stable, biocompatible ...

Researchers find new route to nano self-assembly

October 22, 2009

(PhysOrg.com) -- If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance towards this goal has been achieved by researchers with the U.S. ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.