High-performance microring resonator developed by INRS researchers

February 9, 2010

A new, more efficient low-cost microring resonator for high speed telecommunications systems has been developed and tested by Professor Roberto Morandotti's INRS team in collaboration with Canadian, American, and Australian researchers. This technological advance capitalizes on the benefits of optical fibers to transmit large quantities of data at ultra-fast speeds.

The results of the team's work, just published in the prestigious journal , will facilitate the transition from electronic to optical communications, the future solution for meeting the growing needs of Internet and cellphone users.

The microring resonator investigated by Professor Morandotti's team at INRS's Energy, Materials, and Telecommunications Center in Varennes, Quebec, and by his colleagues, offers several advantages. Made from a special glass with exceptional optical properties, this key component can be incorporated into the microchips used extensively in telecommunications systems. Furthermore, it is fabricated using the same methods as those employed by silicon chip manufacturers, thereby reducing optical component costs and making the technology more affordable.

The new resonator has the additional advantage of using a single low-power source to obtain multiple wavelengths, unlike existing devices that require very high optical power, or different devices. Furthermore, Professor Morandotti and his team have been successful in generating a new multiple-wavelength laser source at a threshold optical power level as low as ~54mW, setting a new world record for glass devices in the process.

This technological breakthrough is crucial because it comes as electronic devices are reaching their data transmission capacity limit, whereas optical fibers offer much greater capacity and better transmission quality. In addition to revolutionizing the world of telecommunications, INRS researchers are helping create new applications in the fields of detection and metrology, including measurement applications in physics and computers, as well as instrument calibration and adjustment.

Explore further: Technological breakthrough in Silicon Photonics: Intel Silicon-based Optical Modulator Could Run Faster Than 1GHz

More information: The articles published in Nature Photonics are available at:
-- www.nature.com/nphoton/journal/v4/n1/abs/nphoton.2009.236.html
-- www.nature.com/nphoton/journal/v2/n12/abs/nphoton.2008.228.html

Related Stories

Team develops tiny optical switch

December 20, 2007

A team of researchers at the University of St. Andrews has developed one of the smallest optical switches ever made.

New nanotech research to enhance future digital imaging

July 10, 2008

A team of researchers from Northeastern’s Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level.

Time Lens Speeds Up Optical Data Transmission

September 28, 2009

(PhysOrg.com) -- Researchers at Cornell University have developed a device called a "time lens" which is a silicon device for speeding up optical data. The basic components of this device are an optical-fiber coil, laser, ...

Recommended for you

Theorists solve a long-standing fundamental problem

August 30, 2016

Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds ...

Quest to find the 'missing physics' at play in landslides

August 30, 2016

During the 1990s, Charles S. Campbell, now a professor in the Department of Aerospace and Mechanical Engineering at the University of Southern California, began exploring why large landslides flow great distances with apparently ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.