Are high speed elephants running or walking?

February 12, 2010

Most animals don't think anything of breaking into a run: they switch effortlessly from walking to a high-speed bouncing run. But what about elephants? Their sheer size makes it impossible for them to bounce up in the air at high speeds. So how are high-speed elephants moving: are they running or walking?

At a first glance, fast-moving elephants look as if they are walking, according to John Hutchinson from the Royal Veterinary College, UK. But closer analysis of elephant footfall patterns by Hutchinson suggested that speedy elephants' front legs walk while their hind legs may trot. Norman Heglund from the Université catholique de Louvain, Belgium, realised that the only way to resolve the conundrum was to measure the immense forces exerted on the animals by the ground as they move and found that elephants run in some senses, but not in others. They publish their results on 12 February 2010 in The Journal of Experimental Biology.

To measure these forces, Heglund had to construct and calibrate an 8m long, elephant-sized force platform from sixteen 1m2 force plates. Crating the 300kg force plates, cameras and computers in Belgium and shipping the equipment to the Thai Elephant Conservation Centre in Lampang, Thailand, Heglund, Joakim Genin, Patrick Willems, Giovanni Cavagna and Richard Lair built a reinforced concrete foundation and assembled the force platform ready to measure the enormous ground reaction forces generated by the animals.

Encouraged to move by their mahouts, 34 elephants ranging from an 870kg baby up to a 4 tonne adult moved over the force platform at speeds ranging from a 0.38m/s stroll to a 4.97m/s charge. Based on the force measurements, the Belgian team was able to reconstruct the movement of each animal's centre of mass and found that the elephant's movements are extremely economical. Consuming a minimum of 0.8J/kg/m, an elephant's cost of transport is 1/3 that of humans and 1/30 that of mice.

Heglund explains that the elephant's cost of transport is low because the animal's step frequency is higher than expected and they improve their stability by keeping an average of two feet on the ground even at high speeds, and three at lower speeds. Combining these approaches, the elephant's centre of mass bounces less than other animals', reducing the giant's cost of transport.

Next the team calculated the way that each animal recycles potential energy into to find out whether they run. According to Heglund, running animals continually recycle potential energy stored in tendons and muscles into bouncing kinetic energy - just like a pogo stick - while walking animals convert potential energy at the start of a stride into kinetic energy as they step forward - much like an inverted swinging pendulum. By tracking how elephants cycle potential energy into kinetic energy over the course of a stride, the team could distinguish whether the high-speed animals were running or walking.

Plotting the potential and kinetic energy of the elephants' centres of mass over the course of many strides at different speeds, the team could see that the elephants were walking like an inverted pendulum at low speeds, but as they moved faster, the kinetic and potential energy plots shifted to look like those of runners. However, when the team analysed the movements of the elephant's centre of mass, they could see that it almost maintained a constant level as the animal shifted its weight from one side to the other, but bobbed down and up like a runner's during the second half of the stride.

So the were running by one measure but not by another and it seems that the forelimbs trot while the hind limbs walk at higher speeds. 'High-speed locomotion in an elephant doesn't fall nicely into a classic category like a run or a trot. It really depends on your definition of "run",' says Heglund.

Explore further: Study: Elephants might seek revenge

More information: Genin, J. G., Willems, P. A., Cavagna, G. A., Lair, R. and Heglund, N. C. (2010). Biomechanics of locomotion in Asian elephants. J. Exp. Biol. 213, 694-706. http://jeb.biologists.org

Related Stories

Study: Elephants might seek revenge

February 16, 2006

An increasing number of incidents involving African elephants attacking humans is leading some scientists to believe the animals may be seeking revenge.

Elephants avoid costly mountaineering

July 24, 2006

Using global-positioning system data corresponding to the movements of elephants across the African savannah, researchers have found that elephants exhibit strong tendencies to avoid significantly sloped terrain, and that ...

Study: Long legs are more efficient

March 12, 2007

Scientists have known for years that the energy cost of walking and running is related primarily to the work done by muscles to lift and move the limbs. But how much energy does it actually take to get around? Does having ...

Elephant legs are much bendier than Shakespeare thought

August 22, 2008

Throughout history, elephants have been thought of as 'different'. Shakespeare, and even Aristotle, described them as walking on inflexible column-like legs. And this myth persists even today. Which made John Hutchinson from ...

Recommended for you

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.